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[1] One of the largest uncertainties for the modeling of tropospheric carbon monoxide
(CO) concentration is the timing, location, and magnitude of biomass burning emissions.
We investigate the sensitivity of simulated CO in the Unified Chemistry Transport Model
(UCTM) to several biomass burning emissions, including four bottom-up and two
top-down inventories. We compare the sensitivity experiments with observations from
MOPITT, surface and airborne NOAA Global Monitoring Division network data, and the
TRACE-P field campaign. The variation of the global annual emissions of these six
biomass burning inventories is within 30%; however, their regional variations are often
much higher (factor of 2–5). These uncertainties translate to about 6% variation in the
global simulated CO but more than a 100% variation in some regions. The annual mean
CO variation is greater in the Southern Hemisphere (>12%) than in the Northern
Hemisphere (<5%), largely because biomass burning is a higher percentage of the total
source in the Southern Hemisphere. Comparisons with CO observations indicate that each
model inventory has its strengths and shortcomings, and these regional variations are
examined. Overall the model CO concentrations are within the observed range of
variability at most stations including Ascension Island, which is strongly influenced by
fire emissions. In addition, we discuss the systematic biases that exist in the inventories
developed by the similar methodologies and original satellite data.
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1. Introduction

[2] Carbon monoxide (CO) has been studied extensively
because of its important role in atmospheric chemistry, air
quality, and carbon research [Seinfeld, 1986;Chameides et al.,
1994; Holloway et al., 2000; Pétron et al., 2002; Lamarque et
al., 2004; Schmitgen et al., 2004; Suntharalingam et al., 2004].
Advancements in the simulation of CO are often driven by
improved source estimates. Currently, fossil fuel emission is
more or less known in developed countries, but not in
developing countries. Biofuel is still not well known in
developing countries because of the uncertainties in the fuel
use and mixture. Our confidence in estimates of CO from
the oxidation of biogenic nonmethane hydrocarbons
(NMHC) is low because of uncertainties in vegetation types
and chemical degradation pathways. One of the largest
uncertainties is in the temporal and spatial variability of

biomass burning, a global emission source in the same order
as fossil fuels.
[3] Recently, there has been an effort to provide accurate

and near real-time biomass burning emissions, using both
‘‘bottom-up’’ and ‘‘top-down’’ approaches. A number of
studies used bottom-up method with constraints from sat-
ellite fire data to investigate biomass burning over global
[Duncan et al., 2003; van der Werf et al., 2003; Hoelzemann
et al., 2004; Ito and Penner, 2004] and regional scales
[Pfister et al., 2004, 2005; Ito and Penner, 2005; Kasischke
et al., 2005]. For example, Duncan et al. [2003] investigat-
ed interannual and seasonal variability of biomass burning
constrained by observations from Total Ozone Mapping
Spectrometer (TOMS), Along Track Scanning Radiometer
(ATSR), and A Very High Resolution Radiometer
(AVHRR). Biomass burning emissions were also estimated
from the Tropical Rainfall Measuring Mission (TRMM),
ATSR, AVHRR, and Moderate resolution Imaging Spec-
trometer (MODIS) [van der Werf et al., 2003, 2006;
Randerson et al., 2005]. Although the satellite products
provide the key information on timing and location of fires,
the quantitative estimate of tracer emissions from biomass
burning is still difficult, mainly because of uncertainties in
fuel loads, combustion efficiency, and burned area that are
used to convert satellite fire data to biomass burning
emissions [van der Werf et al., 2006].
[4] A different approach, the top-down method, was

developed to refine the bottom-up method by using the

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, D23308, doi:10.1029/2006JD008376, 2007
Click
Here

for

Full
Article

1Goddard Earth Sciences and Technology Center, University of
Maryland, Baltimore County, Baltimore, Maryland, USA.

2Also at Atmospheric Chemistry and Dynamics Branch, NASA
Goddard Space Flight Center, Greenbelt, Maryland, USA.

3Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space
Flight Center, Greenbelt, Maryland, USA.

4National Center for Atmospheric Research, Boulder, Colorado, USA.
5Nicholas School of the Environment and Earth Sciences, Duke

University, Durham, North Carolina, USA.

Copyright 2007 by the American Geophysical Union.
0148-0227/07/2006JD008376$09.00

D23308 1 of 17

http://dx.doi.org/10.1029/2006JD008376


CO atmospheric observations [Arellano et al., 2004, 2006;
Pétron et al., 2002; Muller and Stavrakou, 2005; Heald et
al., 2004; Palmer et al., 2003; Pfister et al., 2004]. For
example, top-down emission inventories were constructed
with atmospheric constraints from the total column meas-
urements by the satellite sensor MOPITT [Arellano et al.,
2004, 2006] and from the surface measurements in the
GMD network [Arellano, 2005]. Similar approach was used
by Pfister et al. [2004] and Pétron et al. [2002]. The top-
down approach may have a quite difference from the a
priori estimates.
[5] Here, we present a study of the differences in CO

distributions simulated in a global model due to the differ-
ences in biomass burning emissions. We are particularly
interested in exploring the sensitivity of CO to the uncer-
tainties in biomass burning emissions for different regions
and seasons. We conduct CO simulations using six different
biomass burning inventories that are commonly used in
tropospheric CO studies [Heald et al., 2003; Palmer et al.,
2003; Allen et al., 2004; Arellano et al., 2004, 2006]. These
inventories are based on either TOMS/ATSR/AVHRR
(TOMS-based [Duncan et al., 2003]) or on TRMM/
ATSR/AVHRR/MODIS (TRMM-based [Randerson et al.,
2005; van der Werf et al., 2003, 2004, 2006]). Model CO
concentrations are compared with various kinds of measure-
ments. Consequently, a recommendation of an optimal
choice of biomass burning emission from the six referred
inventories is provided over regional scales. Clearly, caution
should be taken in the recommendation as will be discussed
later in section 3.2 because the difference between simulated
and observed CO is not only caused by bias in biomass
burning, but also induced by uncertainties in other emis-
sions, chemistry, and transport processes.
[6] We organize this paper as follows. Model framework

and measurements are described in sections 2.1, and 2.2
respectively. In particular we present monthly CO biomass
burning emissions over seven regions for each of six CO
biomass burning inventories and summarize the spatial and
temporal discrepancies of the emissions in section 2.1.1.
Section 3 discusses the sensitivity of simulated CO to
different biomass burning inventories by comparing the
model results with surface concentrations from the GMD

network measurements (section 3.1), global column CO
from MOPITT satellite retrieval (section 3.2), and vertical
profiles from GMD and TRACE-P aircraft measurements
(section 3.3). Conclusions and implications of this work are
presented in section 4.

2. Model and Measurements

2.1. Model Description

[7] The GSFC unified chemistry transport model (CTM)
is described by Bian et al. [2006]. This off-line CTM is
driven by assimilated meteorological fields of NASA’s
Goddard Earth Observation System, Version 4 (GEOS-4)
data assimilation system (DAS), updated meteorological
fields every 3 h [Bloom et al., 2005]. The spatial resolution
of the model used in this study is 2� latitude by 2.5�
longitude by 25 vertical layers with a model lid of
0.01 hPa; the tropospheric layers are of the same vertical
resolution as the meteorological fields.
[8] The advection and diffusion algorithms, which use the

same transport core as Goddard Chemistry Aerosol Radiation
and Transport (GOCART) [Chin et al., 2002, 2004] and
Goddard Parameterized CTM (PCTM) [Kawa et al., 2004],
have been extensively evaluated [Lin and Rood, 1996; Li et
al., 2002; Douglass et al., 2003]. The convection algorithm,
which is designed to be consistent with the deep convection
scheme [Zhang and McFarlane, 1995] and shallow cloud
scheme [Hack, 1994] used in the underlying GCM, has been
evaluated in a recent CO2 study [Bian et al., 2006].
[9] The six biomass burning inventories are shown in

Tables 1 and 2. Other sources of CO are summarized in
Table 2. These emissions are explained in the following
three subsections.
2.1.1. Alternative Biomass Burning Emissions in
Sensitivity Studies
[10] The biomass burning emission inventories in Table 1

are either based on TOMS or TRMM data. The two TOMS-

Table 1. Six Biomass Burning Emissions Used in This Study

Name Description References

GFED1 Global Fire Emission
Database version 1

van der Werf et al. [2003,
2004]; Randerson et al.
[2005]

GFED2 Global Fire Emission
Database version 2

van der Werf et al. [2006]

Arellano1 global top-down
emission with a
priori emission of GFED1
and atmospheric constraint
from MOPITT

Arellano et al. [2004]

Arellano2 based on Arellano1 with an
additional atmospheric
constraint of GMD
ground measurements

Arellano [2005]

Duncan1 scaled climatological emission
of Duncan2 with measurements
of TOMS Aerosol Index and
ATSR and AVHRR fire counts

Duncan et al. [2003]

Duncan2 climatological emission Duncan et al. [2003]

Table 2. Total CO Emissions

Direct
Emission

Photochemical
Oxidation References

Fossil fuel 351.6 70.3 Streets et al. [2003, 2006];
Palmer et al. [2003];
Bey et al. [2001]

Biofuel 166.4 31.6 Yevich and Logan [2003];
Streets et al. [2003];
Palmer et al. [2003]

Biomass
burning
GFED2 350.7 38.6 see Table 1
GFED1 444.6 48.9 see Table 1
Arellano1 517.5 see Table 1
Arellano2 415.7 see Table 1
Duncan1 403.3 44.4 see Table 1
Duncan2 429.8 47.3 see Table 1

Biogenic
Isoprene 176.6 Guenther et al. [1995];

Wang et al. [1998]
Monoterpene 50.1 Guenther et al. [1995];

Wang et al. [1998]
Methanol 87.4 Guenther et al. [1995];

Wang et al. [1998]
CH4 oxidation 789.2 DeMore et al. [1997]
Total 962.6a 1254.1a

aEstimated using GFED1.
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based inventories are bottom-up emissions and the TRMM-
based emissions include two bottom-up and two top-down
emissions. The approaches of bottom-up and top-down are
currently the only two methods to obtain emissions. The
bottom-up method compiles emission inventories by char-
acterizing vegetation burning and emission factors, while
the top-down method infers surface fluxes by modifying a
priori emissions using tropospheric CO concentration meas-
urements. The bottom-up method is hampered by limited
data [Streets et al., 2006] and the top-down approach is
limited by the uncertainty in atmospheric transport [Gurney
et al., 2002; Arellano et al., 2004].
[11] The two TOMS-based, bottom-up inventories use the

annual CO emission climatology presented by Duncan et al.
[2003], which considers emissions from deforestation, shift-
ing cultivation, agricultural residues burned in the field,
savanna burning, and forest wild fires. The interannual and
seasonal variability is estimated using satellite observations.
The period of burning in the first inventory is specific to
April 2000 to March 2001 (Duncan1) and derived from
measurements of the TOMS Aerosol Index (AI) and ATSR
fire counts. The seasonal timing of burning in the second is
for a mean year and is derived from an average of fire
counts from the ATSR and AVHRR World Fire Atlases
(Duncan2). The two methods are described by Duncan et al.
[2003].
[12] The two TRMM-based bottom-up emissions are the

Global Fire Emissions Database version 1 (GFED1) and
2 (GFED2). The GFED1 inventory was constructed using
the approaches described in van der Werf et al. [2003, 2004]
and Randerson et al. [2005]. The data set is integrated from
several satellite products over different locations and time
periods. Over regions 38�N–38�S, the data set obtains the
relationship of TRMM-VIRS hot spot data and burned area
using MODIS burned area tiles across Africa, South America,
and Australia. For the study period where MODIS data were
not available, the data set uses a separate linear relationship
between ATSR and VIRS for each grid cell obtained over
the time window when ATSR and TRMM overlapped. In
the extratropics, the approach is extended using ATSR data
and a combination of country-level fire statistics and
AVHRR data in the Russian Far East. The GFED2 inven-
tory is a modified and updated version of GFED1 [van der
Werf et al., 2006], which improves burned area and includes
organic soil carbon and peatland fuels. These modifications
have lowered emissions in southern Africa and South
America and raised emissions in boreal regions.
[13] One top-down emission, based on the GFED1,

is constrained by MOPITT CO column observations
(Arellano1) [Arellano et al., 2004]. Fifteen individual CO
source categories are considered, which include fossil fuel/
biofuel combustion in seven geographical regions, biomass
burning in seven geographical regions, and the global CO
source from the oxidation of isoprene and monoterpenes.
Response functions for each source category are calculated
using the GEOS-CHEM CTM driven by NASA/GMAO
assimilated meteorological fields. The other top-down emis-
sion is also based on the GFED1 and uses a similar
technique approach as in Arellano1, but is constrained first
by MOPITT CO and then by GMD ground CO measure-
ments (Arellano2) [Arellano, 2005]. The top down approach
incorporates long-term and global atmospheric information

into the emission estimation and it is expected to give a
more realistic emission data set.
[14] An important difference between the top-down and

bottom-up approaches is that the estimation of biomass
burning emissions from the bottom-up approach is inde-
pendent from other emissions (e.g., fossil fuels and bio-
fuels). On the other hand, the top-down emission is usually
optimized together with fossil fuel and biofuel emissions,
especially in Asia where the sources are often colocated.
This same issue applies to the source of CO from the
oxidation of methane and NMHC, including coemitted
NMHC from biomass burning. An additional indirect emis-
sion of CO from NMHC oxidation is accounted for in the
four bottom-up emissions (see 2.1.3 for details). Neverthe-
less, the two optimized top-down emissions already include
this effect in their emission amounts. In general, the
agreement of top-down estimation is strongly constrained
by the fact that those were built (using another model) to
minimize their distance to atmospheric observations. The
constrained emissions using one model might be, however
to some extent, used in another model quite successfully
[Arellano and Hess, 2006].
[15] Figure 1 summarizes the monthly mean emissions of

six inventories for seven major biomass burning regions
from April 2000 to March 2001. April 2000 is the time that
MOPITT data became available. The seven regions repre-
sent source areas where the monthly average biomass
burning emission can be characterized using monthly mean
MOPITT CO columns and monthly mean GMD ground CO
measurements [Arellano et al., 2004; Arellano, 2005]. The
global, annual biomass burning emissions (Table 2) vary by
up to 28% relative to the mean annual emission of these six
inventories (457 TgCO/a (where a is year)) with lowest
from GFED2 (389TgCO/a) and highest from Arellano1
(518 TgCO/a).
[16] The seasonal peak in burning occurs around the same

time for the different inventories over northern Africa
(region 2), Central America (region 3) and Southeast Asia
(region 5), but not in the other regions. There are two peaks
over the NH boreal forest (regions 1) and southern Africa
(region 6), as compared to one peak over other regions. For
region 1, emissions peak in May 2000 and again in August
2000, except in GFED1 and Duncan2 which miss an
emission peak in boreal spring and Duncan2 shows a
second peak in July instead of August. GFED2 has the
longest biomass burning emission season, starting in boreal
spring and lasting into October. Both peaks in region 1
come from boreal forest with the latitude of the second
further north. The wide coverage of region 1 is a shortcom-
ing in our approach. In the future study, we should further
divide this region to distinguish the biomass burning emis-
sions from North America, Europe and Russia/northern
Asia. For region 6, GFED2 peaks once in August 2000
instead of twice (i.e., June-July and September) as in the
other inventories. Fire there usually starts over Congo in
May and peaks during June and July (first peak) and then
spreads and moves to eastern Africa (second peak).
[17] However, the most striking difference among these

six inventories is their regional emission totals, which can
vary by more than a factor of two. For instance, the two top-
down emissions are about two to four times higher than the
four bottom-up emissions over Central America (region 3)
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Figure 1. (a) Geographic distributions of seven biomass burning regional areas. The big orange dots are
the location of GMD stations analyzed in Figure 2. (b–h) Monthly mean biomass burning emissions from
six inventories on seven regions (region 1, middle to high Northern Hemisphere; 2, North Africa; 3,
Central America; 4, Southeast Asia and Australia; 5, Southeast Asia, India, and Middle East; 6, southern
Africa; 7, South America).
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during April 2000. The highest monthly emission in South
America is 27 TgCO for Arellano1 and GFED1 and 7
TgCO for GFED2. These significant discrepancies affect
the simulated CO as discussed in the following subsections.
[18] The comparison of the climatological emissions of

Duncan2 with the other year-specific emissions indicates
that our study period had average biomass burning emis-
sions. The deviation between the climatological and year-
specific inventories usually does not exceed the variation
among the year-specific emissions. One exceptional region
is the NH boreal forest (region 1), where the climatological
emission only has one peak in July, but many other
emissions (GFED2, Arellano1, Arellano2, and Duncan1)
have two peaks.
[19] The comparison of biomass burning inventories

helps to identify strengths and weaknesses of inventories
for regional modeling studies and highlights areas where
emissions are highly uncertain. The importance of such
study for the atmospheric science community drives a
similar investigation conducted by Hoelzemann [2006].
The study examined five biomass burning inventories and
their impact on tropospheric chemistry. The five biomass
burning inventories given by Hoelzemann [2006] were the
GWEM-1.3 inventory (GWEM) [Hoelzemann et al., 2004],
the inventory by van der Werf et al. [2003] (gfed), the
climatological inventory of MOZART-2 developed by Hao
and Liu [1994] (Hao&Liu), and two versions of the ATSR
fire count scaled climatological inventories: Schultz [2002]
(mgs_scal) and Granier and Lamarque [Hoelzemann, 2006]
(cg_scal). The global biomass burning CO emissions used
by Hoelzemann [2006] lies between 30 and 38% of the total
CO emission. These percentages of biomass burning con-
tributions are close to the range of 28–38% in our study
(Table 2). There is one overlap in biomass burning emission
inventory use in the study by Hoelzemann [2006] and our
study: both studies make use of the GFED1 emissions,
which show very low emissions during NH spring and have
a distinct peak in September in South America as a result of
elevated deforestation fire emissions (Hoelzemann [2006,
Figure 3.3] and Figure 1, regions 1 and 7, in this work).
2.1.2. Fossil Fuel and Biofuels
[20] Atmospheric CO is released directly from fossil

fuels, biofuels, and biomass burning. The base CO inven-
tory used in this study is described by Bey et al. [2001] for
fossil fuel and Yevich and Logan [2003] for biofuels. These
emissions are compiled on an annual mean basis for the
TRACE-P studies. The base inventory in Asia in the year
2000 for both fossil fuel and biofuels is compiled by Streets
et al. [2003] by summarizing statistical environment and
energy data. However, we increase the Asian fossil fuel
emissions by 46% (39% direct emission and 7% the
secondary source), on the basis of new findings of enhanced
anthropogenic emissions estimated by Streets et al. [2003]
from forward and inverse CTM studies [Palmer et al., 2003;
Heald et al., 2003; Allen et al., 2004; Arellano et al., 2004;
Tan et al., 2004; Wang et al., 2004]. Our emission enhance-
ment is close to the new estimation by Streets et al. [2006]
that is 36% higher, reflecting additional sources which were
missed in the 2000 inventory.
2.1.3. Photochemical Production of CO in the Model
[21] CO is also produced by photochemical reactions

from NMHC and CH4. Production of CO from anthropo-

genic and biomass burning NMHC is derived by multiply-
ing the emission rate of each NMHC in a given inventory
and a yield of CO per carbon atom oxidized with yields
taken from Altshuller [1991]. Applying these yields, we find
that oxidation of NMHC results in a source of CO that
amounts to about 20%, 19% and 11% of the direct emis-
sions of CO from fossil fuels, biofuels, and biomass
burning, respectively. The emissions of CO from these three
source categories are increased by these amounts to account
for the secondary CO source from oxidation of the coemitted
NMHC.
[22] For CO from biogenic NMHC, we adopted the

NMHC emissions calculated from the Global Modeling
Initiative (GMI) CTM, which uses the same meteorological
fields as the simulations presented here. The distribution of
biogenic isoprene is based on a modified version of the
inventory of Guenther et al. [1995], and is dependent on
solar radiation and temperature. The principal modifications
are a decrease in the leaf area index (LAI) from tropical
forests and an improved representation of light attenuation
within the forest canopy as described by Wang et al. [1998],
and a reduction in emission rates for several ecosystems so
that simulated and observed isoprene concentrations agree
better [Bey et al., 2001]. The distribution of monoterpene
emissions is also taken from Guenther et al. [1995] as
modified by Wang et al. [1998]. A biogenic methanol
source of 37 Tg C [Singh et al., 2000] is distributed
according to emissions of isoprene with a yield of 1 CO
from methanol oxidation. The primary acetone emissions
from biogenic sources are about 16TgC/a [Jacob et al.,
2002] and the yield of CO from the oxidation of acetone is
about 0.66 on the basis of degradation pathways given by
Orlando et al. [2000]. The CO from acetone is much lower
compared to other sources and thus is neglected in our
study. We assume a CO yield of 0.2 from the oxidation of
isoprene [Miyoshi et al., 1994], terpene [Hatakeyama et al.,
1991; Vinckier et al., 1998], and other NMHCs. The CO
from these sources is treated as direct emission from the
surface, assuming rapid NMHC oxidation.
[23] Methane oxidation is a major source of CO. The

monthly CH4 fields used in this study are compiled from the
long-term GMD GLOBELVIEW-CH4 observations (http://
www.cmdl.noaa.gov/ccgg/globalview/index.html) and are a
function of latitude. A range of 0.78 to 1.0 of CO yield from
CH4 oxidation are reported by previous studies [Logan et
al., 1981; Tie et al., 1992; Manning et al., 1997; Novelli et
al., 1999; Bergamaschi et al., 2000; Arellano et al., 2004],
though more recent estimates are closer to 1 [Duncan et al.,
2007]. We adopt a yield of 1 for this study.
[24] The main sink for CO is its reaction with OH. We use

monthly mean OH fields which are from a combination of
tropospheric fields of the year 2001 from the GEOS-CHEM
tropospheric chemistry model [Bey et al., 2001; Park et al.,
2004] and stratospheric fields of the year 1995 from the
GMI model [Kinnison et al., 2001]. The global mean OH of
this work is 9.96e05 molecules/cm3, which is similar to
9.7e05 molecules/cm3 from Prinn et al. [2001] and 11.6e05
molecules/cm3 from Spivakovsky et al. [2000]. The global
lifetime of CH3CCl3 with respect to tropospheric OH is 5.6
a for this work and it is slightly shorter than 6.0 (+0.95,
�0.7) a from Prinn et al. [2001] and 5.9 a from Spivakovsky
et al. [2000].
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2.2. Observational Data

[25] We use observations of CO from three sources to
evaluate our simulations. First, the NOAA Global Monitoring
Division (GMD) Carbon Cycle Greenhouse Gases (CCGG)
observational network (http://www.cmdl.noaa.gov/ccgg/
index.html) provide long-term station measurements. Sam-
pling frequencies are approximately weekly at local noon
for surface fixed sites and usually one to two times per
month in local afternoon for aircraft measurement over
aircraft sampling sites. Flagged data are excluded from
our comparisons.
[26] Second, the NASATransport and Chemical Evolution

over the Pacific (TRACE-P) field campaign took place over
the northwest Pacific during February-April 2001 [Jacob et
al., 2003]. CO was measured with a 1 s sampling frequency
using differential absorption spectrometry [Sachse et al.,
1987] with an accuracy of approximately 2% [Heald et al.,
2003]. We use 1-min merges prepared by L. Emmons
(private communication, 2005) for all DC-8 and P-3B
measurements.
[27] Third, CO data retrieved from the Measurements Of

Pollution In The Troposphere (MOPITT) instrument on the
EOS-Terra satellite is available since April 2000. The
retrieval averaging kernels, which are a linear representation
of the vertical weighting of retrievals, are dependent on the
surface albedo, the surface to air temperature contrast, an a
priori CO vertical profile, and a covariance matrix of the
uncertainty in the a priori CO profile [Lamarque et al.,
2004]. The retrieval algorithm adopts a methodology which
seeks the solution that is the most statistically consistent
with both the measured radiances and the typical observed
patterns of CO profile variability [Pan et al., 1998; Deeter et
al., 2003]. MOPITT’s orbit has an equator crossing time of
1045 local time (LT) and its cross-track scanning allows for
near global coverage in 3 d. We use level 2 version 3 column
CO products with 22 km horizontal resolution and roughly
10% precision [Deeter et al., 2003; Emmons et al., 2004].
The retrieved column data is most sensitive to the middle
troposphere and least to the surface [Deeter et al., 2003].
Validations for MOPITT retrieval have been conducted by
various regular aircraft measurement sites and a number of
campaigns [Emmons et al., 2004]. The validation indicates
that the biases of retrievals are 8–10 ppbv in the lower
troposphere, 2–5 ppbv in the midtroposphere, and a slight
negative value in the upper troposphere and lower strato-

sphere over evaluation sites. We calculate the model CO
column using the same averaging kernel used in the
MOPITT retrieval.

3. Simulated CO in Response to Biomass Burning
Emissions

3.1. Surface Concentrations

[28] A statistical analysis of measurement and model
surface CO comparisons is given in Table 3. Six model
CO results are used in the comparison with each
corresponding to an emission shown in Table 2. The
analysis is performed over 39 GMD surface stations for
an overall model performance. We group the GMD surface
stations into 5 groups (Table 3). The geographical locations
of these GMD stations are shown on Figure 2. We charac-
terize the variation of model CO due to different emission
inventories by using two parameters, maximum CO percent
difference (MPD) and annual mean CO percent difference
(AMPD). At each station, we first calculate the CO percent
difference between model and observation for each month.
The MPD is then defined as the maximum value of the
calculated monthly difference during the year and the
AMPD is defined as annual mean of the difference.
The MPD reveals how large the perturbation of the CO
fields can be due to different biomass burning inventories,
relative to the observed, while the AMPD, by comparing
with MPD, exhibits how long this perturbation persists. It is
notable that although MPD itself represents an overall
influence of more than just biomass burning, the variations
of MPD over different regions can provide such information
when the regions are impacted by burning emissions at
different extents.
[29] Statistically, CO in the Southern Hemisphere (SH) is

more sensitive to biomass burning inventories than in the
Northern Hemisphere (NH). The CO MPD is 17–22% with
a mean of 19.1% in the middle to high-latitude SH,
compared with a range of 6–12% and mean of 9.0% in
the NH background environment. This is because the
fraction of total CO contributed from biomass burning is
much smaller in the NH than in the SH (see Figure 3
below). Stations in the interior of the Europe-Asia con-
tinents and the Asian coast regions are special in that they
show almost double the MPD compared with other NH
middle to high-latitude stations, although the AMPDs of the

Table 3. Statistical Analyses for the Percent Differences Between Simulated and Observed Surface COa

Maximum Percent
Difference

Annual Mean Percent
Difference

Range Mean Range Mean

Europe-Asia inland and Asia coast region 12–25% 17.1% 4–6% 5.1%
Other NH mid-high latitudes 6–12% 9.0% 4–7% 4.9%
NH subtropical region 6–15% 10.3% 4–7% 5.4%
Tropical and SH subtropical regions 20–44% 27.3% 8–18% 11.3%
SH mid-high latitudes 17–22% 19.1% 12–13% 12.4%

aModel simulations use six biomass burning inventories in Tables 1 and 2. The observations are obtained from all GMD
ground stations. GMD station (http://www.cmdl.noaa.gov/ccgg) groups: Europe-Asia inland and Asia coast region (including
stations of HUN, BSC, KZD, UUM, TAP); other NH middle to high latitudes (ALT, ZEP, STM, ICE, BRW, CBA, SHM,
MHD, AZR, BAL, WLG, UTA, NWR, LEF, BME, BMW); NH subtropical region (IZO, WIS, MID, MLO, GMI, KUM,
RPB); tropical and SH subtropical regions (CHR, ASC, SEY, SMO, EIC); and SH middle to high latitudes (TDF, CRZ, PSA,
SPO, HBA, SYO). See also Figure 2.
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two groups do not differ much. Globally, the tropical and
SH subtropical regions have the highest MPD because they
are closer to the biomass burning emission regions and
because the biomass burning CO constitutes a large fraction
of total CO there. However, AMPD shows a consistent
latitude gradient with highest values in the high-latitude SH
(average as 12.4%) and lowest in the high-latitude NH
(average 4.9%).
[30] Does difference in biomass burning emissions matter

in modeled CO? Our analyses indicate that it does matter in
the regions strongly influenced by biomass burning sources,
for example, the MPD reaches 44% at ASC. Since the GMD
network is designed for monitoring the atmospheric back-
ground environment, it is more appropriate to use GMD
sites to assess the mean influence on calculated CO. The
background surface CO variation from different biomass
burning inventories in the SH shows AMPD > 12%. The
surface CO in the NH background atmosphere is not as
sensitive to the alternative biomass burning emissions
(AMPD< 5%) although the regional emission variation in
the NH is substantial (Figure 1).
[31] The model-observation comparisons at 8 selected

GMD surface stations are shown in Figure 3 for further
examination. The stations are selected to represent different
biomass burning and ocean regions shown in Figure 1.
Along with the modeled CO simulated by different biomass
burning inventories, the modeled CO without biomass
burning emission is also shown on Figure 3 to illustrate
the fraction of total CO contributed by biomass burning
emission at different geographic locations. The model
captures both the magnitude of seasonal variations and the
mean CO mixing ratio at most locations, except at a SH

high-latitude station (Palmer Station, Antarctica, PSA),
where simulated CO is 10–25% higher than observation.
There are several possibilities for this overestimated CO,
such as emissions or photochemical production are too high
and loss to OH oxidation is too low in the SH; or
interhemispheric transport is too strong. Figure 3 also
confirms that biomass burning CO constitutes a much
smaller fraction of total CO in the NH than in the SH.
[32] All the differences between CO in Figure 3 reflect

the different biomass burning emissions in Figure 1. NH
stations, Tae-ahn Peninsula (TAP), Shemya Island (SHM),
and Alert (ALT), have higher simulated CO from GFED2
during boreal fall season, consistent with much higher
biomass burning emissions from GFED2 in October for
region 1 (Figure 1). Interestingly, the CO response period at
these three stations is slightly different from middle to high
latitudes, ranging from October for TAP, October to
November for SHM, and November to December for
ALT. We analyzed all GMD stations in the NH middle to
high latitudes and found that this delayed 1–2 months of the
response in surface CO depends generally on latitude but
not on longitude. This indicates that the atmosphere takes
1–2 months to transport CO from NH middle to high
latitudes during boreal fall season. However, the transport
time may vary in subject to the seasons. For example,
Lamarque and Hess [2003] analyzed the age distribution
of European emissions over high latitudes (60�–90�). The
study found that the majority of January CO over high
latitudes came from January CO in the source region, while
the maximum contribution of May CO is released during
April in Europe.
[33] Northern tropical station Tenerife, Canary Islands

(IZO) is located at a high-elevation mountain site close to
northern Africa. A NH tropical Atlantic gyre brings marine
air over this station during boreal winter season. Therefore
CO at IZO generally represents atmospheric background
levels so that biomass burning in northern Africa winter
season shows little impact at IZO. Another northern tropical
station Guam, Mariana Islands (GMI) is impacted by
biomass burning emissions from Southeast Asia in spring,
where GFED2 and GFED1 give about 57% and 40% lower
emission than the mean emission in April (Figure 1).
Correspondingly, the surface CO at GMI in April for
GFED2 and GFED1 is around 7.9% and 5.7% lower than
average. Although there is about 15% variation in simulated
CO at GMI using different biomass burning inventories, the
model CO results are still within the range of the observed
CO variation.
[34] CO at SH stations (i.e., Seychelles, Mahe Island

(SEY), Ascension Island (ASC), and Palmer Station,
Antarctica (PSA)) is more sensitive to the uncertainty of
the biomass burning emissions, which confirms our discus-
sion for Table 3. For example, the MPD reaches 44% at
station ASC during the biomass burning season over south-
ern Africa where the emissions from the six inventories vary
by as much as a factor of 4. The range of modeled CO
values once again fall within the observed CO range over
ASC since the variation of measured CO is also very large
during the biomass burning season. Furthermore, unlike the
NH stations, CO at SH stations is impacted for a longer
period (Figure 3). The range of model CO over middle and
high SH, e.g., PSA, is typically around 8 ppb in all seasons

Figure 2. Geographical locations of GMD stations used in
Table 3. Each color represents one station group: Europe-
Asia inland and Asia coast region (red); other NH middle to
high latitude (orange); NH subtropical region (olive green);
tropical and SH subtropical regions (light blue); and SH
middle to high latitudes (dark blue).
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except during austral fall. The sum of biomass burning
emissions from the SH regions (i.e., Australia, southern
Africa, and South America) are 161 (GFED2), 277
(GFED1), 305 (Arellano1), 199 (Arellano2), 193 (Dun-
can1), and 218 (Duncan2) TgCO. The highest emission
from Arellano1 (35% higher than average) and the lowest
from GFED2 (29% lower than average) explain the simu-
lated highest and lowest CO concentrations over PSA.
There is a clear bias in the model at certain times (e.g.,
PSA from January to October and ALT in boreal spring and
fall) which is larger than the differences induced by different
biomass burning emissions. This systematic error may be
related to hemispheric transport issues or to low OH
abundances of GEOS-CHEM over Southern Hemispheric
high latitudes. OH observations from ISCAT 2000 reported
higher OH in the high-latitude Southern Hemisphere
[Mauldin et al., 2004].

3.2. Column Burden

[35] Column CO from MOPITT and from model simu-
lations are shown in Figure 4 for April and Figure 5 for
October. These months are chosen to depict the most
significant differences among the various biomass burning
source simulations [Shindell et al., 2006]. Figures 4 and 5
also include the model CO without biomass burning emis-
sion to illustrate where and when burning has a large
contribution to atmospheric CO. All intensified local col-
umn CO shown in Figures 4 and 5 is associated with fires.
For example, April is a month in the burning season of
Southeast Asia. The peak biomass burning emission over
South America occurs in October. Africa undergoes burning
over a long period of time. In January (not shown), large
fires occur in NH Africa near the Gulf of Guinea. The
burning moves southward in boreal summer and continues
toward southeast Africa in boreal fall (Figure 5).
[36] Globally, the simulated distributions capture the

main features revealed by satellite observations from the

Figure 3. Surface CO mixing ratios (ppb) at GMD stations. Solid line with dots stands for CO monthly
mean from GMD measurements; solid color lines are from model simulations using different biomass
burning emissions as indicated in the legend, and solid thick black line is model CO without biomass
burning.
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MOPITT instrument, for example, the interhemisphere
gradient, the CO maximum over Southeast Asia and down-
wind over the north Pacific Ocean (biomass burning) and
industrial regions (fossil fuel and biofuel). Some fine
features of the comparison are caused by topography, such
as Greenland and high mountains. In areas of elevated
topography, where one or more of the fixed pressure level
values in MOPITT retrieve exceed the actual local surface

pressure, the retrieved state vector is filled with the missing
value numerical identifier (http://mopitt.eos.ucar.edu/
mopitt/data/index.html). Others may be induced by persis-
tent clouds which obviate the retrieval. It is also interesting
to note that no biomass burning inventory leads to the high
values seen over the Pacific and Atlantic oceans.
[37] There are similarities in biomass burning CO from

emissions constructed with the same source data and

Figure 4. Global column CO (1018 molecules/cm2) distributions in April 2000 from (a) MOPITT
observation, (b) model simulation without biomass burning, and (c–h) model simulation with six burning
inventories. Model CO columns have been converted using the same averaging kernel used in MOPITT
retrieval in order to compare with MOPITT observation.
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techniques. For example, the column CO distributions from
TOMS-based emissions, Duncan1 and 2, look more similar
to each other with high CO over both Southeast Asia and
India in April, while TRMM-based emissions GFED1 and 2
produce less CO over India (Figure 4). Furthermore,
TRMM-based emissions Arellano1 and 2 give a similar
high CO over Central America in April.
[38] One motivation for this work is to determine an

optimal choice of biomass burning emission from the
various current available inventories. Figures 4 and 5
provide useful information for such analyses. However,

caution should be taken to recommend biomass burning
inventory on the basis of the comparison of column CO
between model and MOPITT. This is because the difference
is not only caused by bias in biomass burning, but also
induced by uncertainties in other emissions, chemistry, and
transport processes. Fortunately, for tropical regions, the
evaluation can be relatively straightforward on the basis of
model-MOPITT comparison by contrasting the data
between biomass burning and nonburning seasons. In
tropical regions, biomass burning CO during fire season
exceeds CO from all the other sources and processes, as

Figure 5. Same as Figure 4 but for October 2000.
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manifested in Figures 4 and 5. The overall amplitude of the
CO seasonal cycle stemming exclusively from fires is much
higher than the amplitude of CO from a simulation without
biomass burning. Sometimes seasonal variation induced by
biomass burning emission can be of the same order as the
discrepancies resulting from the use of different inventories
(Figures 4 and 5). In addition, model CO can have a
substantial difference from MOPITT CO on regional scales
and the large difference usually occurs in regions where
biomass burning is large. Figures 4 and 5 indicate that each
biomass burning inventory provides a good agreement
between the model results and observations for some
regions and seasons, but not others.
[39] It is difficult to judge biomass burning emission over

NH Southeast Asia where most CO emissions come from
fossil fuel and biofuel (FFBF) even during local biomass
burning season (Figure 4). However, the importance of
FFBF and biomass burning to atmospheric CO varies with
altitude. A field campaign, TRACE-P, was conducted in this
region in the spring of 2001. The model-aircraft comparison
will be introduced in the next section to discern a systematic
FFBF error embedded in six model results and help us to
identify an optimal biomass burning inventory in this
region.
[40] Over Southeast Asia, intensified burning activities

occur during boreal spring season (see Figure 1, region 5,
and Figure 4). The model CO over Southeast Asia in April
varies significantly with different burning emissions. The
modeled CO is higher than MOPITT CO over Southeast
Asia and the adjacent area of the northwest Pacific from
TOMS-based emissions (Duncan 1 and 2) and from two
TRMM-based top-down emissions (Arellano 1 and 2). Such
discrepancy was also reported by a number of TRACE-P
studies for March 2001 [Heald et al., 2003; Palmer et al.,
2003; Allen et al., 2004; Wang et al., 2004], where the
biomass burning emissions used were the same or similar to
the inventories of Duncan et al. [2003]. By comparing with
TRACE-P aircraft measurements, these studies concluded
that biomass burning emission from Southeast Asia is
overestimated by 40–70%. GFED2 gives a lower CO
column than MOPITT but GFED1 produces a distribution
similar to MOPITT. However, as we discussed above,
caution should be taken here in recommending biomass
burning emission because of a large CO emission from
industrial and domestic wood fuel use in Asia. We will
revisit emission inventories in Southeast Asia with an
evaluation using aircraft measurements in the next section.
On the other hand, CO in all model simulations is lower
than MOPITT CO over the central Pacific in this period,
similar to what was shown in previous studies [e.g., Heald
et al., 2003, Figure 3; Arellano et al., 2006, Figure 6] but no
reason was given. We need to investigate whether there is
cloud contamination in MOPITT retrieval during this period
in this location, whether the injection height of burning
adopted in the model is too low, or whether the model
convection over Southeast Asia is not strong enough.
[41] Over Central America, where biomass burning also

occurs in boreal spring season, model CO is too high for
inventories of Arellano1, Arellano2, and GFED2 compared
to MOPITT (Figure 4). The two top-down emissions release
almost triple the CO of GFED1 (region 3 in Figure 1). The
anomalous high-column CO simulated using Arellano 1 and

2 and GFED2 exceeds the uncertainty range that could be
inferred from other processes. The emissions from GFED1
and from Duncan 1 and 2 give more reasonable CO
simulations in this region. The anomalous column CO in
Central America suggests that more investigation of the
inverse work is required.
[42] Biomass burning over South America dominates the

local atmospheric CO during October (Figure 5) and the six
emission sets vary substantially (Figure 1, region 7). With-
out biomass burning emissions, the maximum column CO is
about 1.50 � 1018 molecules/cm2. With biomass burning
emissions, column CO ranges from 2.25 � 1018 using
GFED2 to 3.97 � 1018 using Arellano1. Compared with
MOPITT data, CO from GFED2, Arellano2, Duncan1 and
2 are too low, while CO from Arellano1 and GFED1 are too
high. GFED1, however, was reported to be favored among
the five biomass burning emissions studied by Hoelzemann
[2006] for South America. In addition, CO simulated with
GFED2 is lowest over South America, reflecting the lowest
emission amount in GFED2. The underestimation of South
America’s emission in GFED2 is attributed to cloud cover
and other limitations, as reported in the GFED2 description
[van der Werf et al., 2006].
[43] Fires have an important share on CO concentrations

over the African continent [Hoelzemann, 2006]. A high CO
regime from western Africa to the tropical Atlantic in
January results from NH Africa biomass burning fire
(Figure 1). This NH Africa fire is very intensive, but the
variation of model CO due to six inventories is not as large
as the variations of other fires. Therefore the strong NH
Africa fire is easier to identify and is represented relatively
well in all inventories based on model-MOPITT compari-
son. There are significantly differences in six biomass
burning emissions in SH Africa in May to July (Figure 1).
None of the inventories represents the burning season well
in this region (not shown). Emissions from GFED1, 2 and
Duncan1, 2 are too high, while emissions from Arellano1
and 2 are too low. Another peak of burning over SH Africa
occurs during September to October (Figure 5). Model CO
amounts from all biomass burning emissions are consider-
ably underestimated compared with MOPITT, which is also
concluded by Hoelzemann [2006].
[44] Statistical analyses (Table 4) are applied to quantita-

tively assess the quality of simulations by using mean bias,
which represents the ratio of the model column amounts to
the data, and the linear correlation coefficient. The annual
mean parameters are calculated using the average value of
four monthly means (April, July, October, and January).
[45] Globally, the difference in column CO distributions

given by different biomass burning emissions (shown in the
last column in Table 4) is 5% for bias and 3% for
correlation. It is reasonable that the top-down emission
derived from the MOPITT measurements gives the highest
correlation. It is also understandable that, among six results,
global annual CO is lowest from GFED2 and highest from
Arellano1 by considering their emissions in Table 2.
[46] Regionally, the variation in the SH is generally larger

than in the NH. The difference is around 10–13% in the SH
regions and 2–7% in the NH regions. This column CO
difference due to different biomass burning inventories,
therefore, has a similar magnitude to the variation of surface
CO discussed above. An overall performance of burning
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emissions shown in Table 4 over a certain region, however,
may not be consistent with the results shown in Figures 4
and 5. Take Central America (CA) for example. The
burning season there occurs in April (Figure 1) and the
simulated CO concentrations using GFED2 are much higher
than MOPITT retrieve in that month (Figure 4). On the
annual basis, however, GFED2 gives the best result over
CA (Table 4). This is because simulated CO concentrations
over CA are strongly impacted by South America (SA)
outflow because they border each other. GFED2 has been
identified to be too low in SA (see our discussion above;
also see Figure 5 for October when SA is in burning
season). Therefore the smallest regional bias over CA on
an annual basis (Table 4) is a compromised result of the
high local but low surrounding burnings.
[47] Figure 6 displays probability distributions of column

CO from MOPITT (thick black line) and six model data
(thin color lines) over the regions shown in Table 4. A
burning month is picked for each region in Figure 6 to
highlight the burning influence. The PDF patterns of
MOPITT and models are similar to each other except in
the NH boreal region (region 1) where the model column
CO is consistently lower than MOPITT. This indicates that
some processes other than biomass burning are not well
represented by the model in this region or all inventories
underestimate the emissions. The differences due to differ-
ent biomass burning emissions are usually manifested at the
high end of the CO amounts, and are consistent with high
CO values shown on Figures 4 and 5. For example, the
significant variation of atmospheric CO over the South
America burning season (Figure 5) is shown in Figure 6,
region 7. The PDF for GFED2 is negligible at column CO
greater than 2.5x1018 molecules/cm2, where MOPITT and
other models still have significant probability. This indicates
that GFED2 underestimates burning emission over South
America substantially. The burning area and strength of
Duncan1 and 2 and Arellano2 are also lower than MOPITT,
but Arellano1 and GFED1 are higher. These features
reinforce the conclusions we got from analyzing spatial
column CO distributions in Figure 5.

3.3. Vertical Profiles

[48] The vertical distributions of the modeled CO are
compared with GMD aircraft measurements in Figure 7 at
station Santarem, Brazil (SAN: 2.85�S, 54.95�W). Aircraft
measurements were conducted on 7 and 21 December, both
in the afternoon. The measurements indicate a significantly
different CO vertical distribution between these 2 d. It
appears that local emissions were greater on 7 December
as CO mixing ratios were higher through a deeper boundary
layer. December atmospheric CO at SAN is dominated by
biomass burning emissions from South America; however,
emission from western Africa may also affect CO in SAN
via long-range transport. Our simulations illustrate that CO
is very sensitive to the biomass burning inventories at this
site. The differences among the simulated CO concentrations
from different biomass burning inventories on 7 December
can be twice those of 21 December. The TRMM-based
bottom-up and top-down emissions (GFED1, Arellano1,
and Arellano2) give larger CO values than those of
TOMS-based emissions (Duncan1 and Duncan2). However,
the new version of TRMM-based emission (GFED2) results
in CO distributions that are more similar to TOMS-based
emissions. The order of simulated CO magnitudes (Figure 7)
is consistent with the order of the emission amounts shown
in Figure 1 in South America (region 7). A distinct
boundary layer structure observed on 7 December is not
captured by model simulations, which indicates that the
model’s vertical transport may need to be improved. Also
note that the monthly mean biomass burning emissions used
in the model simulation will not capture day-to-day varia-
tions likely influencing the observations. This inadequate
model representation highlights the importance of matching
temporal scales of emissions for detailed model-observation
comparisons. It may also suggest a need in CTMs to inject
fire emission plumes well above the surface as indicated by
Freitas et al. [2006].
[49] Table 5 summarizes the mean biases between mod-

eled and measured CO over the 37 TRACE-P flights. Two
NASA aircrafts, DC8 and P-3B, were used during spring
2001. Our model-measurement comparisons indicate a
possible systematic difference between the measurements
of the DC8 and P-3B. DC8 gives about 5% higher CO
mixing ratio than P-3B measurement over coast region,

Table 4. Statistical Parameters for the Comparison of Global and Regional Annual Mean CO Between Model and MOPITT Satellite

Dataa

GFED2 GFED1 Arellano1 Arellano2 Duncan1 Duncan2 Max-Min

Bias
Global 0.96 1.01 1.01 0.97 0.98 1.00 0.05
reg1, NHboreal 0.96 0.96 0.97 0.96 0.97 0.98 0.02
reg2, NAfrica 0.98 1.01 0.98 0.95 1.00 1.02 0.07
reg3, CAmerica 1.02 1.09 1.08 1.04 1.05 1.07 0.07
reg4, SAsiaAustralia 0.92 0.99 1.05 0.97 0.94 0.98 0.13
reg5, SEAsiaIndia 1.00 1.03 1.03 1.02 1.05 1.07 0.07
reg6, SAfrica 0.94 0.99 0.94 0.89 0.95 0.95 0.05
reg7, SAmerica 0.96 1.08 1.07 0.99 1.00 1.02 0.12
NHO 0.97 0.98 0.98 0.97 0.98 1.00 0.03
TPO 0.97 1.03 1.03 0.99 1.00 1.02 0.05
SHO 0.93 1.02 1.03 0.96 0.95 0.97 0.10

Correlation
Global 0.90 0.90 0.93 0.92 0.91 0.91 0.03

aThe global and regional least bias and global best correlation from six inventories are in bold.
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while CO measured from DC8 is lower than P-3B by about
2% over Central Pacific. Different sampling could be a
potential reason for the difference. We feel further investi-
gation is needed to examine this systematic difference.
Generally, model CO is closer to observed CO over the
coastal region than over the remote Pacific. The variation of
the six emissions is around 10–13% over the coast region
and 7–10% over the remote region. GFED2 once again
gives the lowest CO and Duncan2 gives the highest.
Nevertheless, it is hard to recommend a particular emission
on the basis of Table 5 since the comparison is also affected
by uncertainty in other factors, such as emissions from
industry.
[50] Typical model vertical profiles are compared with

aircraft measurements conducted in TRACE-P (Figure 8).
Also shown in Figure 8 are their corresponding flight tracks
with three measurements over western Pacific and two
trans-Pacific measurements. These five flights are selected
from a total of 37 flights in terms of their geographic
representation, and especially their CO vertical distribu-
tions. Simulations generally capture measured CO vertical
structures. Three measurements over the East China Sea

show CO outflow from east Asia to the Pacific, although the
altitude of the outflow layer for each case is different. The
boundary CO outflow should mostly come from the local
sources in east China, which composes most of the indus-
trial emission. This is evident on Figure 8 where CO
concentrations simulated using different biomass burning
emissions are almost the same within PBL. On the other
hand, whenever there is outflow at high altitudes, CO
concentrations simulated by different inventories show
more divergence, which illustrates that biomass burning
emission over Asia does play a role at higher altitudes.
This pattern is also reflected in vertical ozone profiles
influenced by biomass burning emissions over this area in
the study of Hoelzemann [2006, Figure 4.38]. CO simulated
by the two TOMS-based bottom-up emissions in March are
too high in the outflow above the PBL, but not inside PBL,
indicating that TOMS-based emissions are overestimated.
Allen et al. [2004] used the same biomass burning emission
as Duncan2 for the flight of 13 March and reached the same
conclusion.
[51] Vertical variation of CO measured by two trans-

Pacific flights is relatively small compared to the variation

Figure 6. PDF of column CO over seven land regions (Figure 1) and over SH ocean. Burning month is
picked for each region.
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over the East China Sea. The difference in simulated CO
concentrations over central Pacific increases with altitude,
indicating that the relative contribution of biomass burning
to total CO is larger at higher altitude. Here, CO simulated
with two TRMM-based top-down emissions is close to or
even larger than that with TOMS-based emissions. This
differs with model CO nearer the coast and is attributed to
different spatial distributions seen in Figure 4 where
TRMM-based emissions are concentrated over Southeast
Asia, and TOMS-based emissions also expand to India.

4. Conclusions

[52] We used the Unified Chemistry Transport Model
(UCTM) to investigate the sensitivity of global and regional

CO to uncertainties in biomass burning. We examined six
commonly used emission inventories (Tables 1 and 2),
ranging from 389 to 518 Tg CO/a; this range (i.e., 129 Tg CO/a)
represents about 6% of the total source (�2169 Tg CO/a, total
direct emissions plus total photochemical oxidation in
Table 2). Though 6% may seem small, the regional biomass
burning emissions can vary significantly. In Southeast Asia,
Central America, Australia, and South America, the emis-
sions from different inventories can differ by more than a
factor of four. Consequently, simulated CO in areas close to
biomass burning source regions is affected significantly by
the choice of emission inventory. For instance, the simulated
CO varies by more than 44% of measured CO at the GMD
station, Ascension Island, during the biomass burning
season of western Africa. Overall, CO is more sensitive to
the variation of biomass burning emissions in the SH than in
the NH as CO from fossil fuels and biofuels is relatively low
in the SH.
[53] To assess quality of these emissions, we compared

the simulated CO with measurements from MOPITT, the
GMD surface and aircraft network, and the TRACE-P field
campaign. Our evaluation indicates that no inventory is
better than another on a global scale, but for individual
regions clear differences in performance can be identified.
This information not only helps in regional model studies,
but also provides a starting point for further study to
develop a ‘‘best’’ compiled global emission inventory. The
strengths and weaknesses of each inventory found in this
work are useful to guide future improvements of the
inventories.
[54] Globally, the simulation that gives the highest cor-

relation with MOPITT column CO uses the Arellano1
inventory, which is a top-down estimate using GFED1
emissions as a priori and constrained by MOPITT data.
However, this inventory gives a higher CO than GMD
ground measurements in the high SH austral summer. This
may be caused by high SH CO estimation of MOPITT due
to the adoption of a global uniform typical vertical CO
profile in MOPITT’s retrieval. Furthermore, despite the
large uncertainty in six biomass burning emissions, all
modeled CO concentrations are still within the GMD
measured range over the most stations including station
Ascension Island which is strongly impacted by fire
emissions outflow from the African and South American
continents.
[55] Regionally, South America is an area with a signifi-

cant difference among six biomass burning emission inven-
tories. Inventories of Arellano2, Duncan1 and 2, and
particularly GFED2, yield very low CO concentrations.
Simulations with Arellano1 and GFED1 are too high.
Anomalous high atmospheric CO in Central America is
produced by the emissions of Arellano1 and 2 and GFED2,
while the other emissions are reasonably good there. In the
Southeast Asia biomass burning season, aircraft measure-
ments from the TRACE-P campaign are used to appraise
burning emissions independent of the potential large bias
from fossil fuel and biofuel emissions. Our analyses indicate
that TOMS-based emissions, Duncan1 and 2, are too large,
while the TRMM-based bottom-up emissions, GFED1 and
2, are good choices over this region. For NH Africa during
boreal winter, the intense fires are easier to detect and the

Figure 7. Vertical CO mixing ratio comparisons between
model simulations with different biomass burning inven-
tories and CMD aircraft measurements at station SAN on
(top) 7 December 2000 (1621–1804 LT) and (bottom) 21
December 2000 (1745–1905 LT).
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six sets there are close to each other compared with other
fire regions. Fires over SH Africa have two peaks with
distinct features. The first peak occurs during May to July
over the Democratic Republic of Congo. Emissions of six
inventories vary significantly there and none of inventories
produce a close simulation of MOPITT CO. There is an
overall underestimation of CO concentration during the
second peak of SH Africa fires. More work on evaluation
of fire satellite products is needed to study this region. In
addition, if the evaluation is conducted on an annual basis,
the simulated CO over a certain region (for example Central
America) may not only be attributed to local fires, but also

to the fires that occurred in surrounding areas. Caution
should be taken in applying the annual ‘‘best’’ burning
performance over certain regions because the good score
could be a compromised result of wrong reasons.
[56] The importance of the methodologies and data ori-

gins in developing the emission inventories is evident in the
similarities between the two TOMS-based emission inven-
tories and between the two top-down emission inventories.
It indicates that systematic biases may be persistent in an
approach in determining emissions. Intercomparison of CO
produced by different emission inventories has shown to be
a good method to identify potential systematic errors.

Table 5. Average Biases Between Modeled and Measured CO From TRACE-P Aircraft Measurementsa

GFED2 GFED1 Arellano1 Arellano2 Duncan1 Duncan2

Coast DC8 0.93 0.95 0.96 0.99 1.04 1.06
Coast P-3B 0.88 0.90 0.91 0.93 0.97 0.98
Transit DC8 0.87 0.90 0.91 0.93 0.94 0.97
Transit P-3B 0.90 0.92 0.93 0.95 0.95 0.97

aCoast DC8 contains flights in the days of 0303 (3 March), 0307, 0309, 0310, 0313, 0317, 0318, 0320, 0323, 0326, 0329, and 0331. Coast P-3B contains
the days 0304, 0307, 0309, 0310, 0313, 0317, 0318, 0321, 0323, 0327, 0330, and 0402. Transit DC8 contains 0227, 0403, 0406, and 0409. Transit P-3B
contains 0226, 0227, 0301, 0403, 0406, and 0407.

Figure 8. (a–e) Vertical CO profiles simulated by six biomass burning inventories and observed from
TRACE-P aircraft measurements. (f) Corresponding flight tracks for these measurements.
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