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[1] We have implemented a module for tropospheric aerosols (GOCART) online in
the NASA Goddard Earth Observing System version 4 model and simulated global
aerosol distributions for the period 2000–2006. The new online system offers several
advantages over the previous offline version, providing a platform for aerosol data
assimilation, aerosol‐chemistry‐climate interaction studies, and short‐range chemical
weather forecasting and climate prediction. We introduce as well a methodology for
sampling model output consistently with satellite aerosol optical thickness (AOT)
retrievals to facilitate model‐satellite comparison. Our results are similar to the offline
GOCART model and to the models participating in the AeroCom intercomparison. The
simulated AOT has similar seasonal and regional variability and magnitude to Aerosol
Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and
Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom
parameter are consistently low relative to AERONET in biomass‐burning‐dominated
regions, where emissions appear to be underestimated, consistent with the results of the
offline GOCART model. In contrast, the model AOT is biased high in sulfate‐dominated
regions of North America and Europe. Our model‐satellite comparison methodology
shows that diurnal variability in aerosol loading is unimportant compared to sampling the
model where the satellite has cloud‐free observations, particularly in sulfate‐dominated
regions. Simulated sea salt burden and optical thickness are high by a factor of 2–3 relative
to other models, and agreement between model and satellite over‐ocean AOT is
improved by reducing the model sea salt burden by a factor of 2. The best agreement in
both AOT magnitude and variability occurs immediately downwind of the Saharan dust
plume.
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1. Introduction

[2] Aerosols scatter and absorb solar and longwave radi-
ation, perturbing the energy balance of Earth’s atmosphere
[McCormick and Ludwig, 1967; Charlson and Pilat, 1969;
Atwater, 1970; Mitchell, 1971]. Aerosols additionally have
complex and not yet well‐understood effects on cloud
brightness [Twomey, 1974] and the occurrence and intensity

of precipitation [Gunn and Phillips, 1957; Liou and Ou,
1989; Albrecht, 1989] and so play a role in modulating
Earth’s climate and hydrological cycle [e.g., Ramanathan et
al., 2001a]. Long‐range transport of aerosol pollutants can
as well impact the air quality and visibility far from sources
[e.g., Prospero, 1999; Jaffe et al., 2003; Bertschi et al., 2004;
Colarco et al., 2004]. The extent of anthropogenic influence
on the global aerosol system is the determinate and key
uncertainty in anthropogenic radiative forcing of Earth’s
climate system [Intergovernmental Panel on Climate
Change, 2007].
[3] Because of this role of aerosols in modulating Earth’s

climate, a considerable aerosol observing system has
evolved, especially since the late 1990s. This observing
system includes space‐based remote sensing platforms [e.g.,
Herman et al., 1997; Goloub et al., 1999; King et al., 1999;
Kaufman et al., 2002; Stephens et al., 2002; Winker et al.,
2003], networks of ground‐based sampling [e.g., Malm et
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al., 1994; Prospero, 1999] and remote sensing instruments
[e.g., Holben et al., 1998; Welton et al., 2001], and occa-
sional aircraft campaigns that include detailed in situ sam-
pling and remote sensing measurements [e.g., Ramanathan
et al., 2001b; Swap et al., 2003; Reid et al., 2003; Singh
et al., 2006]. Despite this progress, however, coordination
of these various measurements remains challenging [Diner
et al., 2004], and there remain large gaps in both the char-
acterization of aerosol composition (i.e., size, shape,
absorption) and the spatial and temporal coverage of these
observations (i.e., throughout the vertical column, over
bright surfaces, in the vicinities of clouds) [e.g., Chin et al.,
2009a].
[4] Chemical transport models (CTMs) have emerged as

important tools for filling in these observational gaps, either
by formally homogenizing the observing systems through
data assimilation [e.g., Collins et al., 2001; Zhang et al.,
2008] or by serving as a platform to interpret observations
from diverse sources [e.g., Rasch et al., 2001; Chin et al.,
2002, 2003; Colarco et al., 2002, 2003; Heald et al.,
2006; Matichuk et al., 2007, 2008]. The aerosol models
noted above are of a class of “offline” CTMs: the meteo-
rology driving the aerosol simulation is prescribed. By
contrast, an “online” simulation couples the dynamics of the
aerosol distributions to the atmospheric thermodynamic
state so that the solutions are fully interactive and the impact
of, for example, variations in aerosol properties can feed
back on the system. This online approach has been taken in
some air quality forecasting systems [e.g., Jacobson, 1997a,
1997b; Grell et al., 2005] and is the basis for interactive
assessment of the impact of aerosol distributions on future
climate [e.g., Koch, 2001; Perlwitz et al., 2001]. Recently,
the European Center for Medium‐Range Weather Fore-
casting (ECMWF) has made strides toward an operational
online global aerosol and weather forecasting system that
includes prognostic aerosol distributions and a data assimi-
lation capability [Morcrette et al., 2009; Benedetti et al.,
2009].
[5] In this paper we introduce a new online aerosol

modeling system, based on the merger of a well‐known
offline aerosol transport model (the Goddard Chemistry,
Aerosol, Radiation, and Transport model, GOCART) with
the state‐of‐the‐art NASA Goddard Earth Observing Sys-
tem (GEOS) atmospheric general circulation model and data
assimilation system. There are a number of advantages of
including GOCART online within the GEOS modeling
system. The GEOS system routinely performs near‐real‐
time meteorological forecasts; the inclusion of aerosols in
this system automatically provides an additional chemical
weather forecasting capability. The GEOS system already
incorporates data assimilation of meteorological parameters;
the inclusion of aerosols will permit an explicit treatment of
aerosol effects in the observation operators of current IR
sensors (e.g., AIRS, IASI, TOVS), at the same time pro-
viding a first step toward a generalized aerosol data assim-
ilation capability. In these respects our effort here is similar
to the ECMWF effort noted above. The GEOS system,
however, is also being developed with an Earth system
modeling capability; the same system used in the forecasting
and data assimilation mode can be run as a climate model to
explore radiative and chemical feedbacks on the climate
system.

[6] This paper seeks to establish the credibility of the
baseline aerosol simulations in this new model both in terms
of performance relative to other aerosol models and com-
parisons to observations. We focus here on the quantitative
comparison of the simulated aerosol optical thickness to
observations from a network of ground‐based sun photo-
meters (Aerosol Robotic Network, AERONET) and satellite
observations (Moderate Resolution Imaging Spectroradiometer,
MODIS, and Multiangle Imaging Spectroradiometer, MISR)
over the period 2000–2006. A related study using these
simulations [Nowottnick et al., 2009] deals with one aspect
of this modeling system in greater detail in a case study of
the sensitivity of mineral dust distributions to dust source
scheme, augmented by extensive field campaign measure-
ments. The evaluation of the model with respect to other
aspects of the global aerosol observing system (e.g.,
CALIPSO space‐based lidar observations) will be the subject
of future studies, and we note that the underlying GEOS
model core is itself evolving to higher spatial resolutions and
newer physical parameterizations.
[7] In section 2 we describe the new modeling system and

the data sets used in its evaluation. In section 3 we present
the results of our model and the comparisons of simulated
aerosol burden, lifetime, and optical thickness to other
similar aerosol models and observational data sets. In
section 4 we discuss the overall model results. Section 5
provides a brief conclusion.

2. Methodology

2.1. Model Description

[8] We have implemented an aerosol transport module
online within the NASA Global Modeling and Assimilation
Office (GMAO) Goddard Earth Observing System version 4
(GEOS‐4) atmospheric general circulation model (AGCM)
[Bloom et al., 2005]. GEOS‐4 is based on the finite‐volume
dynamical core [Lin, 2004] and contains physical para-
meterizations based on the National Center for Atmospheric
Research (NCAR) Community Climate Model version 3
(CCM3) physics package [Kiehl et al., 1996]. GEOS‐4 in-
corporates version 2 of the Community Land Model
(CLM2, Bonan et al., 2002). The Physical‐space Statistical
Analysis System (PSAS) is the backbone of the meteoro-
logical assimilation system in GEOS‐4 [Bloom et al., 2005].
[9] GEOS‐4 can be run in climate, data assimilation, or

replay modes. In climate mode, the initial conditions are set
and the model provides a forecast for a specified time. In
assimilation mode, the model is run similarly to climate
mode, but a meteorological analysis is performed every
6 h to adjust the model temperature, wind, and pressure
fields. In replay mode, the model is forced by a previous
analysis. By construction, the GEOS‐4 replay with an
identical version of the model used to generate the analysis
reproduces the analysis meteorology exactly. Replay mode
allows us to simulate the period of time covered by the
previous analysis but without the computational cost of
actually running the analysis. This mode is most similar to
how offline CTMs work.
[10] The aerosol module incorporated in GEOS‐4 is based

on the NASA GOCART model as described in Chin et al.
[2002] and contains components for dust, sea salt, black
and organic carbon, and sulfate aerosols. Previously,
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GOCART has been run as an offline CTM driven by assim-
ilated meteorology [Chin et al., 2002, 2003, 2007, 2009b]. In
GEOS‐4, GOCART is run online within the AGCM. Here,
by “online” we mean that the aerosol transport and
dynamics are consistent with the GEOS‐4 AGCM meteo-
rological fields at every time step. This can be contrasted
with an offline simulation in which the meteorology at a
particular time step is interpolated from the bounding
analyses. We note that the aerosols are not radiatively
coupled to the AGCM in the version of GEOS‐4 used here.
[11] We replay GEOS‐4 from the GEOS‐DAS CERES

analyses [Bloom et al., 2005] for the years 2000–2006. The
analyses are available every 6 h at a spatial resolution of
1.25° longitude × 1° latitude with 55 vertical layers between
the surface and about 80 km. An important caveat in our
replay approach is that while we replay the winds, pressures,
and temperature fields from the analyses, we do not use their
moisture fields, instead allowing the model to develop its
own moisture climatology. This approach reduces the
GEOS‐DAS tendency toward excessive precipitation in the
tropics (i.e., the GEOS‐DAS system has a dry bias when
assimilating moisture observations) and improves the com-
parison between model and observed precipitation data sets
[Bloom et al., 2005]. We note this is a novelty of the online
system discussed here, in that offline CTMs generally lack
the physical mechanisms to develop their own humidity
fields. Additionally, although the model advection and
physical processes are conservative of the total air mass, the
replayed pressure fields are not; tracer mass concentration is
explicitly enforced in our model by requiring the same dry
mass of each aerosol tracer before and after the new analysis
is introduced in the replay step.
[12] We run the model at the same horizontal resolution as

the analyses but reduce the number of vertical levels in the
stratosphere so that we run with only 32 vertical levels. The
model physical and chemical time step is 30 min; this time
step is further split during the finite‐volume dynamics [Lin,
2004]. The aerosol fields are initialized from zero and we
allow a 3‐month spin‐up for the period October–December
1999.
[13] Below we summarize our treatment of each aerosol

species in our online implementation of GOCART in
GEOS‐4 in order to document differences from our refer-
ence Chin et al. [2002] version of GOCART. We note that,
as in Chin et al. [2002], our aerosols are treated as external
mixtures and do not interact with each other. The assump-
tion of external mixing has implications for aerosol optical
properties, as internally mixed (e.g., coated) particles may
have very different optical properties than their component
constituents may imply (e.g., enhanced absorption due to
coatings, as in Jacobson [2001]). We acknowledge this
limitation in the current model and suggest exploring this
further in the future as more detailed aerosol microphysics
will be incorporated in the model and permit internal mixing
to be considered (e.g., including microphysical mechanisms
as in Bauer et al. [2008]).
2.1.1. Dust
[14] As in Chin et al. [2002], the spatial distribution and

magnitude of dust sources in our model follows from
Ginoux et al. [2001] and is based on the association of
observed dust source locations with large‐scale topographic
depressions. We have modified this source map over China

to reflect the influence of recent land use change on dust
emissions [Chin et al., 2003]. We additionally incorporate
the particle size‐dependent threshold wind speed formula-
tion to initiate dust emissions from Marticorena and
Bergametti [1995] (their equation (6)). Owing to differ-
ences in the GEOS‐4 climatology of surface winds relative
to previous versions of the GEOS‐DAS assimilated mete-
orology (such as those used in previous GOCART simula-
tions) we have adjusted the global scaling constant for dust
emissions (see Ginoux et al. [2001] equation (2)) to C =
0.375 mg s2 m−5 (Ginoux et al. [2001] used C = 1 mg s2 m−5

and obtained emissions of 1814 Tg yr−1 for 0.1–6 mm radius
particles; we obtain an average emissions of 1475 Tg yr−1

over that size range). We discretize the dust particle size
distribution into eight size bins spaced between 0.1–10 mm
radius, following the size partitioning in Tegen and Lacis
[1996]. Four of the size bins are in the range 1–10 mm
radius; for each of these bins we assume the soil mass
fraction sr = 0.25. Because the particle fall velocity is neg-
ligible for submicron particles we group the first four size
bins (0.1 mm � r � 1 mm) into a single transported bin but
retain the subbin particle size distribution of Tegen and
Lacis [1996] for purposes of optics calculation. For pur-
poses of emission, the grouped first bin has soil mass
fraction sr = 0.1. Our dust removal is by sedimentation, dry
deposition, wet removal, and convective scavenging as in
Chin et al. [2002].
[15] We compute optical properties for each of our size

bins assuming that the subbin particle size distribution is
described by the functional form d(Mass)/d(ln r) = constant
[after Tegen and Lacis 1996]. Assuming sphericity and a
constant particle density across the size bin, this implies a
power‐law distribution for the subbin particle number size
distribution (i.e., d(Number)/dr ∼ r−4). As for other aerosol
species, we assume Mie scattering [Wiscombe, 1980] and
refractive indices from the Global Atmospheric Data Set
(GADS [Koepke et al., 1997]), although we modify the
refractive indices for dust somewhat across the visible part
of the spectrum to more closely match a climatology of
refractive indices retrieved from the ground‐based AERO-
NET sun/sky photometer observations [Holben et al., 1998;
Dubovik et al., 2002] at Capo Verde, off the west African
coast and under the summer Sahara dust plume. The im-
plications of this choice of refractive indices is a less
absorbing dust aerosol at near‐UV and visible wavelengths
than the GADS inventory would indicate, consistent with
recent studies [e.g., Kaufman et al., 2001; Colarco et al.,
2002; Sinyuk et al., 2003]. At 550 nm, the single scatter
albedo for our 2000–2006 mean dust particle size distribu-
tion is 0.93 over Saharan Africa using the refractive indices
in this study (nref = 1.45 − 0.0022i), compared with 0.87
using the GADS refractive indices (nref = 1.53 − 0.0055i).
2.1.2. Sea Salt
[16] By mass, the dominant source of aerosol globally is

sea salt produced by wind action at the ocean surface. We
are at present not interested in simulating the optically less
important and short‐lived giant‐sized sea salt aerosol parti-
cles (dry radius > 10 mm), so we consider here only the
indirect production mechanism from bursting bubbles
[Monahan et al., 1986], as modified by Gong [2003] to
account better for the size distribution of small sea salt
particles. Accordingly, we simulate the lifecycle of sea salt
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aerosols using five size bins spanning the range 0.03–10 mm
dry radius, where the emissions are a function of the particle
size and surface wind speed (Gong [2003] equation (2)). We
assume the particles undergo hygroscopic growth according
to the equilibrium parameterization of Gerber [1985] (see
also Gong et al. [1997]). Aerosol losses due to sedimenta-
tion, dry deposition, wet removal, and convective scaveng-
ing are as in Chin et al. [2002]. The humidified particle size
enters our computations of the particle fall velocity, depo-
sition velocity, and optical parameters.
2.1.3. Carbonaceous Aerosol
[17] We track separately black and organic carbon aero-

sols. In what follows, we represent organic carbon aerosols
in our model in terms of particulate organic matter (POM,
where POM = 1.4 × organic carbon mass, see Textor et al.
[2006]). The sources of these aerosol particles arise from
anthropogenic and natural sources, including fossil fuel,
biofuel, and biomass‐burning emission sources, and (in the
case of organic carbon) from the oxidation of biogenic
emissions from plant matter. Our biomass burning source is
from the Global Fire Emission Database version 2 (GFEDv2)
[van der Werf et al., 2006] and provides monthly varying
emissions keyed to satellite fire detections. Owing to the heat
generated in the fires we distribute their emissions uniformly
throughout the planetary boundary layer height in the grid
box fire emissions occur in, although we note that recent
evidence suggests a significant fraction of wildfire smoke
emissions could be injected above the boundary layer [e.g.,
Kahn et al., 2008], which would have impacts on the long‐
range transport of the smoke. We have time‐invariant sour-
ces of fossil fuels and biofuels, and a monthly varying cli-
matology of biogenic emissions, following from Chin et al.
[2002], except that we have modified biofuel and fossil
fuel sources in the United States to a monthly varying cli-
matology as in Park et al. [2003]. Aerosol losses are by dry
deposition, wet removal, and convective scavenging as in
Chin et al. [2002]. Following Cooke et al. [1999] and Chin et
al. [2002], we account for the chemical processing (“aging”)
of the carbonaceous aerosols as a conversion from a hydro-
phobic to hydrophilic mode with an e‐folding timescale of
2.5 d [Maria et al., 2004]. The hydrophobic component of
the aerosol has equivalent optical properties to the hydro-
philic component at 0% relative humidity but is not subject
to wet removal or convective scavenging processes. The
hydrophilic component is subject to these removal processes.
The aerosol optical properties are as in Chin et al. [2002].
2.1.4. Sulfate Aerosols
[18] The treatment of sulfate aerosol cycle is updated

somewhat from Chin et al. [2002]. We have primary
emissions of dimethylsulfide (DMS), sulfur dioxide (SO2),
and sulfate (SO4). We use the GFEDv2 inventory discussed
above to provide monthly varying emissions of SO2 from
biomass‐burning sources. SO2 emissions from explosive
volcanic injection are based on data from the Global Vol-
canism Program [Siebert and Simkin, 2002] and SO2

retrievals from the Total Ozone Mapping Spectrometer
[Carn et al., 2003] and OMI spacecraft instruments and
emissions from continuously outgassing volcanoes are from
the AeroCom inventories used in similar modeling studies
[Dentener et al., 2006]. DMS emissions are based on a
monthly varying climatology of oceanic DMS concentra-
tions as described in Chin et al. [2002]. Anthropogenic

emissions from biofuel and fossil fuel are formulated simi-
larly as for carbonaceous aerosol, as in Chin et al. [2002]
and Park et al. [2003]. The sulfur chemistry cycle follows
from Chin et al. [2000]. We use prescribed oxidant fields of
hydroxyl radical (OH), nitrate radical (NO3), and hydrogen
peroxide (H2O2) from a monthly varying climatology pro-
duced from simulations of tropospheric chemistry in the
offline Harvard University GEOS‐CHEM model [Bey et al.,
2001], with stratospheric OH superimposed from simula-
tions in the NASA/GMI model [Kinnison et al., 2001]. We
track separately DMS, SO2, SO4, and methanesulfonic acid
(MSA), which have losses by dry deposition, wet removal,
and convective scavenging as in Chin et al. [2002]. The
treatment of sulfate aerosol optical properties is as in Chin et
al. [2002].

2.2. Data Sets

[19] In order to establish the credibility and performance
of our new GEOS‐4 modeling system, we compare our
simulated aerosol distributions to other similar aerosol
models, including a recent version of the offline GOCART
CTM driven by the GEOS‐4 meteorological analyses [Chin
et al., 2009b], as well as to several ground‐based and sat-
ellite observational data sets. We briefly describe those data
sets here.
2.2.1. AeroCom Models
[20] We compare the results of our simulations to the

models participating in the Aerosol Comparisons between
Observations and Models (AeroCom) project (http://nansen.
ipsl.jussieu.fr/AeroCom). The AeroCom initiative was cre-
ated in 2003 to provide a consistent platform for comparing
aerosol models with each other and with various data sets
[Textor et al., 2006; Kinne et al., 2006; Schulz et al., 2006].
A recent analysis of 16 global aerosol models participating
in AeroCom focused on aerosol lifecycle [Textor et al.,
2006] and aerosol optical properties [Kinne et al., 2006].
We do not attempt here an exhaustive comparison of our
model to all of those individually, but rather we highlight
the range and mean of the AeroCom models to establish the
reasonableness of our model relative to the community state
of the art. Included in the AeroCom suite of models is a
version of the offline GOCART CTM as driven by the older
GEOS‐3 meteorological analyses [e.g., Chin et al., 2007].
2.2.2. Offline GOCART Run with GEOS‐4 Analyses
[21] Because of the heritage of our online GEOS‐4

simulations with the offline GOCARTCTM, we compare our
model results of the recent results of the offline GOCART
system as driven by the GEOS‐4 meteorological analyses
[Chin et al. 2009b]. Ideally, the principal difference in the
two sets of simulations should be the difference between
online and offline simulation streams. This is unfortunately
not the case, and we note several differences between the
online system that is the subject of this paper and the recent
offline GOCART results. First, the offline system described
in Chin et al. [2009b] was run at a coarser spatial resolution
(2.5° longitude × 2° latitude with 30 vertical layers) than our
online system. Additionally, the Chin et al. [2009b] offline
model results were driven with more recent inventories for
anthropogenic emissions of carbonaceous aerosols and sul-
fate precursors [Streets et al., 2009]. There were as well
some variations in the dust and sea salt emission source
functions. Chin et al. [2009b] use a dust emission scaling
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factor of C = 0.8 mg s2 m−5 versus the C = 0.375 mg s2 m−5

we use in our results, and they adjust the power law
dependence on wind speed in the Gong [2003] sea salt flux
equation to somewhat reduce sea salt emissions. Finally, we
note that the version of GOCART implemented online in
GEOS‐4 was developed independently and from an earlier
version of the GOCART system than the Chin et al. [2009b]
results, so there is likely some variation in particular process
algorithms.
2.2.3. AERONET
[22] AERONET measures the spectral aerosol optical

thickness (AOT) through a ground‐based network of sun/
sky scanning photometers [Holben et al., 1998]. AERONET
has been operating since the early 1990s in support of NASA
Earth Observing Satellite validation. Over its lifetime there
have been about 400 sites operated, with about 250 sites
active as of late 2008. Spectral AOT to an accuracy of ±0.015
is determined from direct sun measurements made every
15 min of the spectral transmission at 340, 380, 440, 500,
670, 870, and 1020 nm [Holben et al., 2001]. From the AOT
measurements, the Angstrom parameter can be determined
as

� ¼ � ln ��1=��2ð Þ
ln �1=�2ð Þ ; ð1Þ

where tl is the AOT at two wavelengths l1 and and l2. The
Angstrom parameter gives important information about
particles size: for particles relatively large compared to the
wavelength, a is small (a < 1; e.g., dust), while for small
particles the AOT varies more strongly with wavelength and
a > 1 is typical. Additionally, a has a dependency on relative
humidity in that as particles swell the Angstrom parameter
will generally decrease in magnitude. In our analysis we use
the Version 2 (http://aeronet.gsfc.nasa.gov/), Level 2 (cloud‐
screened, quality‐assured) AERONET direct sun derived
AOT product, specifically the AOT at 500 nm and the
440 nm–870 nm Angstrom parameter. Critical to AERONET
operation is a uniform calibration and cloud‐screening pro-
cedure [Smirnov et al., 2000].
2.2.4. MODIS
[23] The space‐based MODIS provides near‐global, daily

retrievals of AOT in cloud‐free and glint‐free conditions
using separate algorithms over ocean [Tanré et al., 1996,
1997] and land [Levy et al., 2007a, 2007b]. There are two
MODIS instruments. MODIS on the Terra satellite has been
operational since early 2000. MODIS on the Aqua satellite
has been operational since mid‐2002. MODIS‐Terra has a
daytime equator crossing time of 10:30 AM local and
MODIS‐Aqua has a daytime equator crossing time of
1:30 PM local. The land and ocean aerosol retrieval
algorithms are lookup table based, where the desired aerosol
properties are inverted from a table of precomputed spectral
radiances that account for different possible size and com-
position mixtures of aerosols. Over ocean, the AOT is
retrieved from radiance measurements at six wavelengths
between 550 and 2130 nm, with the AOT product available
in seven channels (470, 550, 660, 870, 1240, 1630, and
2130 nm). Over land, a reduced number of channels are
available because of the brightness and inhomogeneity of
the land surface relative to the ocean; the land retrieval uses
the radiances measured at 470, 660, and 2130 nm to provide

AOT at three channels (470, 550, and 660 nm). The
uncertainty in the MODIS aerosol products is characterized
such that one standard deviation of the retrievals fall within
Dt = ±0.03 ± 0.05t over the ocean and Dt = ±0.05 ± 0.15t
over land relative to collocated AERONET measurements
[Remer et al., 2005]. In our analysis we use the land and
ocean AOT retrievals valid at 550 nm from the Collection 5
MODIS algorithm products [Remer et al., 2005, 2008].
2.2.5. MISR
[24] MISR is aboard the same Terra spacecraft as

MODIS‐Terra and has also been making retrievals of
aerosol properties since early 2000. MISR contains nine
push‐broom cameras to observe the same point on Earth
from nine different angles (nadir, ±26.1°, ±45.6°, ±60.0°,
and ±70.5°) and in four spectral bands (446, 558, 672, and
866 nm). Aerosol retrievals are performed using a lookup
table approach as well, with retrievals provided at 17.6 ×
17.6 km2 horizontal resolution, where constraint of angular
information from the multiangle viewing geometry is used
to characterize the aerosols and also permits retrievals over
bright surfaces [Martonchik et al., 2004; Abdou et al., 2005;
Kahn et al., 2005]. The MISR swath width along the ground
is at least 360 km, providing global coverage approximately
every 9 d. The uncertainty in the MISR AOT retrieval is
characterized such that two thirds of the retrievals fall within
the larger of 0.05 or 0.2t relative to collocated AERONET
measurements [Kahn et al., 2005]. The MISR product does
not provide a quality assurance (QA) flag as was done for
MODIS, but the MISR “best estimate” AOT selected for this
study implies high confidence in the aerosol retrieval. We
use the latest version of the MISR aerosol retrieval algo-
rithm (version F12_0022).

3. Results

[25] We run the GEOS‐4 model with online GOCART
aerosols for the period October 1999–December 2006, with
the first three months representing a spin‐up period. The
model is run in a replay mode driven by the GEOS‐DAS
CERES analyses as described above. We retain the results
for the period 2000–2006 for our analysis. We archive the
instantaneous snapshot of the model aerosol distributions
every 6 h (at 0, 6, 12, and 18 UTC). Time‐averaged diag-
nostic fields relevant to the aerosol budget and lifetime are
also archived every 6 h.

3.1. Aerosol Budgets and Lifetimes

[26] In this section we discuss the aerosol lifecycle in our
GEOS‐4 implementation of GOCART relative to similar
aerosol models. Table 1 provides a summary of our multiyear
average aerosol emissions, burdens, lifetimes, and loss rates.
We discuss the GEOS‐4 emissions, burdens, and aerosol
sink processes and put them in the context of the AeroCom
model suite and specifically compare our GEOS‐4 results to
the offline GOCART model results from Chin et al. [2009]
(Table 1).
3.1.1. Emissions
[27] Figures 1 and 2 summarize the emissions graphically

for our experiment. Figure 1 shows the spatial distribution
of the aerosol sources averaged over the period 2000–2006.
The major dust sources in the Sahara, the Arabian peninsula,
and Asia (the Takla Makan and Gobi deserts) are apparent,
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as are the lesser dust sources in southern Africa, Patagonia,
Australia, and the North American Southwest. Sea salt
emissions are at a maximum in the extratropics (the
“Roaring Forties” in the Southern Hemisphere, particularly).

Sulfate aerosol emissions and production are highest in the
industrial regions of the eastern U.S., central Europe, and
Southeast Asia. Carbonaceous aerosols have important
anthropogenic sources in the same regions, as well as major

Figure 1. Annual average aerosol emissions over the period 2000–2006 used in our model. Results
shown are for dust, sea salt (dry mass), sulfate (sulfur mass of direct emissions and chemical production
from oxidation of SO2), and carbonaceous (BC+POM) aerosol.

Table 1. Global Annual Total Aerosol Emissions and Annual Average Aerosol Burdens, Lifetimes, and Loss Frequenciesa

Species
Emissions
(Tg yr−1)

Burden
(Tg)

Lifetime
(days)

kwet
(days−1)

kdry
(days−1)

Dust 1970 31.6 5.85 0.055 0.116
3242 38.4 4.33 0.056 0.176
1789 19.2 4.22 0.084 0.245

(541–4036) (1.4–33.9) (0.92–18.4) (0.027–0.169) (0.072–0.995)
Sea salt 9729 23.4 0.88 0.45 0.69

5056 10.7 0.77 0.40 0.90
16407 8.3 0.48 0.73 1.60

(2190–117949) (3.4–18.2) (0.03–1.59) (0.11–2.45) (0.06–2.94)
Black carbon 10.06 0.243 8.82 0.078 0.036

10.11 0.239 8.62 0.079 0.037
11.96 0.229 6.91 0.128 0.028

(7.83–19.34) (0.113–0.527) (5.15–15.3) (0.055–0.175) (0.005–0.046)
POM 68.76 1.30 6.90 0.104 0.041

86.21 1.55 6.56 0.109 0.044
95.87 1.58 6.07 0.137 0.033

(59.33–137.7) (0.84–2.14) (4.12–8.08) (0.107–2.445) (0.006–0.094)
Sulfate (sulfur amount only) 58.73 0.710 4.42 0.194 0.033

46.12 0.861 5.78 0.146 0.028
58.18 0.653 4.14 0.224 0.030

(40.88–77.42) (0.0369–0.923) (2.56–6.36) (0.115–0.340) (0.003–0.074)

aNote. For each cell, the top (bold) number is the result of our GEOS‐4 simulations, the second (italicized) number is the result of the offline GOCART
model [Chin et al., 2009b], the third number is the average of the AeroCom models (see text), and the final numbers (in parentheses) are the range of the
AeroCom models.
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sources from biomass burning in equatorial and southern
Africa, South America, and the boreal forests in Siberia
and Canada.
[28] Figure 2 shows the climatological monthly aerosol

emissions for the period 2000–2006. The shading indicates
the maximum and minimum monthly emissions over this
period, and so illustrates the range of interannual variability
in our model. Also shown are the mean monthly global
emissions over this time period (black line). For species
other than carbonaceous aerosols the monthly emissions are
within 10% of the mean over the period simulated. For dust
and sea salt, the emissions are driven by variability in model
dynamics (specifically, the surface wind speed) and, in the
case of dust, variability in the soil moisture. For sulfate,
there is a weak link to the model dynamics via the wind
speed dependence of DMS emissions. The dominant source

of sulfate aerosol production is via chemical oxidation of
SO2, which incorporates the DMS source and is more
strongly linked to the model dynamics by the aqueous phase
production of sulfate occurring as SO2 is oxidized in cloud
and rain water (the mean monthly chemical production of
sulfate is shown by the dashed black line, which dominates
the overall source of sulfate aerosol and accounts for most of
the variability shown in the total source).
[29] The largest interannual variability in aerosol sources

is for carbonaceous aerosols (Figure 2). Black carbon
emissions account for only about 15% of the mass of total
carbonaceous aerosol emissions. About 50–60% of the total
carbonaceous emissions are due to anthropogenic, biofuel,
and biogenic sources (the dashed black line); we do not
account for any interannual variability in these sources. The
remaining, but highly variable, contribution to emissions is

Figure 2. Monthly and interannual variability of aerosol emissions in the GEOS‐4 model by species.
The light shaded region shows the range between the minimum and maximum monthly, globally aver-
aged emissions for the period 2000–2006 and the black line within the shading shows the mean of the
emissions over the period 2000–2006. For sulfate aerosols, note that the magnitude is presented in terms
of Tg of sulfur per month; the dashed line shows the 2000–2006 average of chemical production of sulfur
that goes into the sulfate aerosol. For carbonaceous aerosols, we present the sum of black carbon and par-
ticulate organic matter. The darker shaded region in the carbonaceous aerosol plot shows the contribution
of biomass burning to emissions and the dashed line shows the sum of anthropogenic, biofuel, and bio-
genic emissions averaged over the period 2000–2006.
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due to biomass burning. The interannual variability in bio-
mass burning emissions of carbonaceous aerosols is shown
by the darker shaded trace, which varies by as much as
100% about the mean (black line through the shading).
[30] As noted above, in addition to the GEOS‐4 results

shown in Table 1 we also show the results of the AeroCom
model suite and the offline GOCART results. It was not
possible to abstract the range of AeroCommodel values from
the reference paper, so we instead went to the AeroCom
website and viewed the data directly. Results from 17 models
are used. Not all fields were reported for all models on the
website, so when we show the mean and range of values
from AeroCom in Table 1 it should be understood that we are
showing the mean and range for each species only for the
models reporting the relevant quantities on the AeroCom
website. Despite this difference, there are only small differ-
ences in the mean values of quantities we show in Table 1
relative to the Textor et al. [2006] paper (see their Figure 1
and Table 10).
[31] For all species, the annual average emissions in

GEOS‐4 are within the range of the AeroCom models. We
note that this is also true of the offline GOCART results.
The greatest diversity in the AeroCom emissions are for dust
and sea salt, which is primarily related to what part of the
particle size distribution the individual models are simulat-
ing but is also related to differences in the meteorology used
in the different models. The GEOS‐4 emissions differ
somewhat from the offline GOCART emissions. The larger
dust emission scaling constant used in Chin et al. [2009b]
results in about 65% greater dust emissions in the offline
model, which is not the factor of 2.13 the scaling constant
choices in the two models would imply. Although both
models use the same winds, the offline model has spatially
averaged them to its coarser resolution, so because of the
nonlinear relationship of dust emissions to wind speed the
offline model would have lower emissions if the scaling
constants were identical. The modification to the sea salt
emission flux equation results in lower overall sea salt
emissions in the offline GOCART, although again the
coarser spatial resolution filters out some of the higher sur-
face wind speeds in the meteorological analyses. Emissions
are more similar for carbonaceous aerosols, as well as for
emissions and production of sulfate, with nearly identical
black carbon emissions, somewhat more emissions of POM,
and somewhat less production of sulfate in the offline GO-
CART. As noted above, there were differences in the emis-
sion inventories for anthropogenic emissions in these
species, but the principle difference appears to be the emis-
sion factor choices for determining biomass‐burning emis-
sions. In GEOS‐4 we use the biome‐dependent emission
factors from Andreae and Merlet [2001] (e.g., 4.76, 0.48, and
0.35 g kg−1 of dry matter burned, respectively, for POM,
black carbon, and SO2 in savannah and grassland), whereas
in the offline GOCART the emission factors chosen have
larger magnitudes (11.2, 1, and 1.1 g kg−1 dry matter in all
biomes [Chin et al., 2009b]), corresponding to significantly
higher biomass‐burning aerosol emissions in GOCART (56
Tg POM yr−1 versus 30 Tg yr−1 in GEOS‐4). GEOS‐4 has a
somewhat greater sulfate aerosol source than GOCART. We
include in our budget of sulfate sources the chemical pro-
duction of sulfate aerosol from oxidation of SO2. Primary
emissions of sulfate are similar in GEOS‐4 and GOCART,

so the discrepancy in the total sulfate source is due to
chemistry. We point out that different oxidant fields are used
in GEOS‐4 than in GOCART, and as well that the aqueous
production of sulfate from SO2 reaction with H2O2 will
depend on the model hydrological cycle, which is also dif-
ferent in GEOS‐4 than in GOCART owing to differences in
the meteorology.
3.1.2. Burdens
[32] For all species except sea salt, the annual average

aerosol burden in GEOS‐4 is within the range of the
AeroCom models (Table 1). As with emissions, the greatest
diversity in the AeroCom models is for dust and sea salt,
again reflecting differences in the particle size distributions
the various models consider. The burdens of black carbon
and sulfate are very similar in the online GEOS‐4 and the
offline GOCART. As suggested by the emissions, the burden
of dust in the offline GOCART is higher than in GEOS‐4
but only by about 20% (interestingly, the offline GOCART
dust burden is high and outside the range of the AeroCom
models). Also as suggested by emissions, the POM burden
is about 20% higher in the offline GOCART than in GEOS‐4.
For sea salt, the burden in GEOS‐4 is more than twice the
GOCART burden and about three times the magnitude of
the average AeroCom burden. We discuss the implications
of the high sea salt burden on simulated aerosol optical
thickness in sections 3.2 and 4.
3.1.3. Lifetimes and Sink Processes
[33] Despite significantly lower emissions of dust in

GEOS‐4 than in GOCART, the two models develop similar
burdens. The explanation is that in GEOS‐4 the dust aerosol
atmospheric residence time (or lifetime) is about one and a
half days longer than in GOCART (5.85 days vs. 4.33 days).
Here, the lifetime t is computed as the aerosol burden
divided by the loss rate sink. In order to separate the aerosol
losses into the losses from dry and wet processes, respec-
tively, we compute the loss frequency k as in Textor et al.
[2006, equation (7)], computed analogously to the chemi-
cal first order loss rate coefficient:

kwet ¼ 1

�

sinkwet
sinkwet þ sinkdry

; kdry ¼ 1

�

sinkdry
sinkwet þ sinkdry

: ð2Þ

As defined, the greater the removal rate the more efficient
that process is at removing aerosols in our model.
The aerosol lifetimes and loss frequencies are tabulated in
Table 1.
[34] For all species, the aerosol lifetimes in GEOS‐4 are

within the range of the AeroCom models. This is true also
for aerosol loss frequencies, except in the case of POM for
the wet loss frequency, which is just outside the lower end
of the AeroCom results. In general, however, the aerosol
lifetimes in GEOS‐4 are somewhat higher than either the
mean of the AeroCom results or the GOCART values. The
result is that despite lower emissions of dust and carbona-
ceous aerosols in GEOS‐4 relative to GOCART, the bur-
dens are basically similar. The exception is for sulfate,
where the GEOS‐4 lifetime is shorter than the GOCART
lifetime (4.42 d versus 5.73 d), owing to somewhat more
efficient removal processes. For carbonaceous aerosols, the
removal rates are essentially the same in GEOS‐4 as in
GOCART.
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[35] For both dust and sea salt, the removal of aerosol in
GEOS‐4 is less efficient than in GOCART because of dry
removal processes. The total dry removal is the sum of dry
deposition due to turbulent mixing in the model surface
layer (all species) and removal by gravitational settlings
(only dust and sea salt). The turbulent dry deposition
parameterization is identical for all aerosol species in
GEOS‐4 and is reasonable for sulfate and carbonaceous
aerosols compared to other models, so weaker dry loss pro-
cess in GEOS‐4 for dust and sea salt is attributed to settling.
Unfortunately, unraveling that further is beyond the scope of
this study. The algorithms used for settling differ somewhat
in GEOS‐4 relative to GOCART, and there are additional
considerations related to the different spatial resolutions
used in the two models.

3.2. Aerosol Optical Thickness

[36] In this section we focus on evaluating the aerosol
distributions simulated by GEOS‐4 in terms of the AOT.
Relative to aerosol mass, there are considerably more data
available to constrain modeled AOT because of the avail-
ability of global satellite data sets and the extensive, long
running ground‐based sun photometer observations from
the AERONET [Holben et al., 1998]. We first compare
simulated AOT in GEOS‐4 to the results of the AeroCom
models and offline GOCART, and then we compare to
observational data sets.
3.2.1. Comparison of GEOS‐4 AOT to Models
[37] In order to derive AOT from modeled mass distribu-

tions, a conversion must be applied that implies assumptions
about aerosol particle size distribution, composition, and
effects of aerosol hygroscopicity on optical properties. This
conversion is expressed here in terms of the mass extinction
efficiency (bext), which is in practice precomputed in a lookup
table for each species as a function of wavelength, relative
humidity, and (depending on the species) particle size. In

Table 2 we summarize the various models’ globally, annu-
ally averaged AOT, as well as the mass extinction efficiency
(at l = 550 nm) implied by their AOT and mass burdens
(see Kinne et al. [2006], Table 4).
[38] For all aerosol species except sea salt and sulfate, the

GEOS‐4 mean AOT is within the range of the AeroCom
results. The GEOS‐4 AOT of carbonaceous and sulfate
aerosols is similar to the offline GOCART results, and
GEOS‐4 has a higher AOT of sea salt and a lower AOT of
dust than in GOCART. For dust and POM the GEOS‐4
AOT is nearly the same as the mean of the AeroCom results
and about 25% higher than the AeroCom mean for black
carbon. As already discussed, the GEOS‐4 burden of sea
salt is considerably higher than in any of the AeroCom
models; consequently, the AOT due to sea salt is also high.
The sulfate AOT is only slightly outside the range of the
AeroCom models. Both the sulfate mass burden and mass
extinction efficiency for sulfate in GEOS‐4 are about 10%
greater than the AeroCom mean values, but it should be
stressed that some of the AeroCom models compensate for
high or low mass burdens with lower or higher mass
extinction efficiencies to produce AOT values somewhere
near the mean [Kinne et al., 2006]. It should be noted, for
example, that although the offline GOCART burden of sea
salt is higher than the AeroCom mean, its AOT is lower and
the mass extinction efficiency used is on the low end of the
AeroCom models. This is not necessarily significant of
anything, as the mass extinction efficiency and burden are
both a function of what part of the particle size distribution
is considered in the model. Here, though, the significant
difference in the GEOS‐4 and GOCART mass extinction
efficiencies for sea salt are related to the less efficient loss
processes in GEOS‐4, which favors retaining the more
optically efficient part of the size spectrum. We point out,
however, that all of the GEOS‐4 and GOCART simulated
mass extinction efficiencies are within the range of the
AeroCom models.
3.2.2. Comparison of GEOS‐4 AOT to Observational
Data Sets
[39] In the following we compare our model results to

observations of the AOT from ground‐based and satellite
measurements. In the results that follow, we make one
correction to the model based on the previous discussion.
We have already identified that the sea salt aerosol burden in
the model is high and outside the bounds of the AeroCom
models despite reasonable emissions (Table 1). The expla-
nation for this is in the much slower sea salt aerosol loss in
GEOS‐4 relative to other models, particularly in terms of
dry removal processes. This plays out in the AOT by leading
to much larger sea salt component AOT than in the Aero-
Com models (Table 2). The improvement of the sea salt
component in the model is beyond the scope of this study,
so in the remainder of the paper we scale our sea salt bur-
dens by a factor of 0.5 (i.e., we cut the sea salt burden in
half) in order to facilitate and improve comparison to
observational data sets.
3.2.2.1. Comparisons With AERONET
[40] We compare the simulated aerosol optical thickness

and Angstrom parameter from the model with observations
from AERONET. Our approach is to construct a consistent
database of monthly mean AERONET and model spectral
AOT values. We bin the AERONET observations at a

Table 2. Globally, Annually Annual Averaged Aerosol Optical
Thickness (AOT [550 nm]) and Mass Extinction Efficiency (bext)

a

Species AOT bext (m2 g−1)

Dust 0.034 0.55
0.041 0.61
0.032 0.99

(0.012–0.054) (0.46–2.05)
Sea salt 0.119 2.59

0.021 0.98
0.033 3.01

(0.020–0.067) (0.97–7.53)
Black carbon 0.0051 10.7

0.0050 10.7
0.0041 9.41

(0.0017–0.0088) (5.3–18.9)
POM 0.018 6.94

0.018 5.83
0.018 5.50

(0.006–0.030) (3.2–9.1)
Sulfate 0.054 12.87

0.051 11.59
0.035 11.31

(0.015–0.051) (4.2–28.3)

aNote. Results are abstracted from Kinne et al. [2006, Table 4]. The
separate rows in each table cell are as in Table 1: GEOS‐4 (top line, bold),
GOCART (second line, italics), AeroCom mean (third line), and AeroCom
range (fourth line).
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6‐h time resolution centered at our model synoptic output
times of 0, 6, 12, and 18 UTC. The monthly mean of the
AERONET AOT is the weighted average of the binned
AERONET data in a month, where the mean of each 6‐h time
bin is weighted by the number of observations that compose
it. In order not to bias the results by erroneous or anomalous
observations (e.g., clouds that slip through the cloud
screening) we require a minimum of four observations per
time bin and four valid time bins per month to compose a
monthly mean. The model AOT at 500 nm is sampled and
weighted consistently with that (i.e., we make the model
monthly mean AOT at a site using only times when AERO-
NET had measurements). The monthly mean Angstrom
parameter is composed in a similar fashion.
[41] Figure 3 shows the distribution of AERONET sites

used in our study. We have selected only sites with three or
more valid monthly means for each month (each of January,
February, etc.) during the period 2000–2006. This selection
process reduces us from several hundred potential AERO-
NET sites to only 53 sites, but these sites have long‐term,
high‐quality records of the total column aerosol burden over
our simulation period. Table 3 shows the names of each site,
the Principal Investigator (PI), and its location. Additionally,
Table 3 and Figure 3 summarize the comparison of our
model to the 53 selected AERONET sites. In Figure 3 each
AERONET site has an associated shaded symbol where the

symbol’s orientation and shading indicate the model’s AOT
bias relative to the observations. Table 3 gives the number
of months for which the sites and model were compared, the
correlation coefficient, bias, and skill score. The general
pattern is that (1) the model is biased low in AOT in bio-
mass burning influenced regions in South America and
Southern Africa, (2) the model AOT is similarly biased low
in the dust and biomass burning influenced regions in Sa-
helian Africa, (3) the model AOT is similar in magnitude to
the observed AOT across the western United States
(although we point out that the AOT is low in magnitude at
these sites), (4) the model AOT is generally biased high in
the eastern United States and anthropogenic pollution
influenced sites in Europe, and (5) the model AOT is low
compared to Asian sites influenced by mixtures of dust and
pollution (e.g., Kanpur, India (#47) and Beijing).
[42] Figures 4–7 show the comparison of the model AOT

and Angstrom parameter to AERONET observations at four
sites representing different aerosol regimes. Similar plots are
made for all 53 sites shown in Figure 3; we show only four
sites here for brevity and for their representation of different
aerosol environments. Each panel shows the time series, a
scatter plot, and a relative distribution (PDF) of the model
and observed values of AOT and Angstrom parameter, as
well as some statistics of the comparison: number of months
compared, correlation coefficient (r), absolute bias, root‐

Figure 3. Map showing locations of 53 AERONET sites used in this study (see Table 3 for corresponding
site names). The symbol indicates the model bias in AOT relative to the observations, with an upward‐
pointing symbol indicating the model is biased high and downward‐pointing symbol indicating the model
is biased low. The shading indicates the magnitude of the bias.
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mean‐square variance, skill score, and linear fit parameters.
The skill score follows from Taylor [2001, equation (4)]
and assesses the performance of the model in terms of
both its correlation and variance relative to the observa-
tions. As defined, the skill score approaches zero as the
correlation becomes negative or the variance approaches
either zero or infinity and approaches unity as the model
variance approaches the observed variance and the corre-
lation approaches 1.
[43] GSFC (Figure 4, #13 in Figure 3 and Table 3) is

dominated by anthropogenic aerosols. The model captures
the pronounced seasonal variability in the observed AOT

and is well correlated with both the AOT (r = 0.83) and
Angstrom parameter (r = 0.70) at this site, but with a high
bias in the AOT (b = 0.054) and low bias in the Angstrom
parameter (b = −0.326).
[44] Alta Floresta (Figure 5, #22) is influenced by sea-

sonally varying biomass burning. Again, the model is well
correlated and has similar seasonal variability to the
observed AOT (r = 0.83) and Angstrom exponent (r = 0.78),
importantly capturing the annual peak in AOT due to bio-
mass burning. Here, however, the model is biased low rel-
ative to the observed AOT (b = −0.158) and biased slightly
high relative to the Angstrom parameter (b = 0.135). The

Table 3. Summary of Statistics for GEOS‐4/AERONET Comparisonsa

# Site and PI Lat Lon h n rt bt st ra ba sa

(1) Coconut Island (PI: Brent Holben) 21.43 −156.21 0 47 0.55 0.04 0.59 0.64 0.09 0.61
(2) La Jolla (PI: Robert Frouin) 32.87 −116.75 115 54 0.36 −0.01 0.61 0.44 −0.28 0.61
(3) Rogers Dry Lake (PI: van den Bosch) 34.93 −116.12 680 62 0.74 0.02 0.86 0.68 −0.22 0.80
(4) Maricopa (PI: Brent Holben) 33.07 −110.03 360 68 0.69 0.01 0.85 0.43 −0.20 0.59
(5) Sevilleta (PI: Doug Moore) 34.35 −105.12 1477 71 0.65 −0.00 0.65 0.56 −0.26 0.66
(6) BSRN BAO Boulder (PI: Brent Holben) 40.04 −104.99 1604 63 0.53 −0.01 0.54 0.61 −0.34 0.48
(7) Bratts Lake (PI: Bruce McArthur) 50.28 −103.30 586 69 0.52 0.03 0.58 0.79 −0.38 0.69
(8) KONZA EDC (PI: David Meyer) 39.10 −95.39 341 69 0.78 −0.01 0.62 0.52 −0.37 0.70
(9) BONDVILLE (PI: Brent Holben) 40.05 −87.63 212 80 0.64 0.02 0.65 0.41 −0.16 0.50
(10) Walker Branch (PI: BrentHolben) 35.96 −83.71 365 55 0.76 0.02 0.84 0.49 −0.41 0.53
(11) Egbert (PI: Norm O’Neill) 44.23 −78.25 264 50 0.76 0.06 0.88 0.68 −0.40 0.66
(12) MD Science Center (PI: BrentHolben) 39.28 −75.38 15 83 0.83 0.05 0.80 0.40 −0.39 0.47
(13) GSFC (PI: BrentHolben) 38.99 −75.16 87 84 0.83 0.05 0.82 0.70 −0.33 0.74
(14) COVE (PI: Brent Holben) 36.90 −74.29 37 77 0.80 0.06 0.82 0.27 −0.36 0.52
(15) CCNY (PI: Barry Gross) 40.82 −72.05 100 56 0.85 0.04 0.81 0.68 −0.23 0.66
(16) Billerica (PI: Steve Jones) 42.53 −70.73 82 42 0.85 0.04 0.81 0.72 −0.27 0.80
(17) CARTEL (PI: Alain Royer and Norm O’Neill) 45.38 −70.07 300 54 0.70 0.05 0.83 0.65 −0.30 0.61
(18) Howland (PI: Brent Holben) 45.20 −67.27 100 63 0.72 0.05 0.83 0.52 −0.41 0.53
(19) La Parguera (PI: BrentHolben) 17.97 −66.96 12 52 0.84 −0.02 0.72 0.85 0.07 0.74
(20) Cordoba‐CETT (PI: BrentHolben) −30.48 −63.54 730 62 0.19 −0.01 0.44 0.41 −0.13 0.44
(21) CEILAP‐BA (PI: Brent Holben) −33.43 −57.50 10 77 0.09 −0.02 0.33 0.20 −0.29 0.53
(22) Alta Floresta (PI: Brent Holben) −8.13 −55.90 277 65 0.83 −0.16 0.49 0.78 0.14 0.58
(23) Sao Paulo (PI: Paulo Artaxo) −22.44 −45.26 865 61 0.43 −0.11 0.35 0.44 0.02 0.67
(24) Ascension Island (PI: BrentHolben) −6.02 −13.59 30 51 0.50 −0.00 0.75 0.67 0.14 0.51
(25) Mongu (PI: Brent Holben) −14.75 23.15 1107 77 0.26 −0.08 0.37 0.62 −0.10 0.33
(26) Skukuza (PI: Stuart Piketh and Brent Holben) −23.01 31.59 150 81 0.49 −0.08 0.33 0.41 −0.10 0.44
(27) Capo Verde (PI: Didier Tanré) 16.73 −21.07 60 67 0.77 0.00 0.79 0.42 −0.04 0.46
(28) Dakar (PI: Didier Tanré) 14.39 −15.04 0 55 0.52 −0.04 0.69 0.33 −0.14 0.31
(29) Ouagadougou (PI: Didier Tanré) 12.20 −0.60 290 67 0.52 −0.12 0.27 0.42 −0.06 0.71
(30) Agoufou (PI: Philippe Goloub) 15.34 −0.52 305 40 0.35 −0.01 0.58 −0.08 −0.08 0.42
(31) Banizoumbou (PI: Didier Tanré) 13.54 2.66 250 69 0.58 −0.04 0.55 0.18 −0.10 0.58
(32) Ilorin (PI: Rachel T. Pinker) 8.32 4.34 350 50 0.56 −0.24 0.14 0.83 −0.05 0.90
(33) SEDE BOKER (PI: Arnon Karnieli) 30.85 34.78 480 75 0.56 0.07 0.77 0.72 −0.13 0.85
(34) Nes Ziona (PI: Arnon Karnieli) 31.92 34.79 40 70 0.47 0.05 0.68 0.76 −0.24 0.88
(35) Solar Village (PI: Naif Al‐Abbadi) 24.91 46.40 764 78 0.74 −0.01 0.77 0.68 −0.17 0.33
(36) El Arenosillo (PI: Cachorro Revilla) 37.10 −5.27 0 60 0.66 0.02 0.83 0.70 −0.25 0.78
(37) Le Fauga (PI: Mougenot and Dedieu) 43.38 1.28 193 45 0.34 0.01 0.67 0.60 −0.37 0.72
(38) Lille (PI: Philippe Goloub) 50.61 3.14 60 54 0.57 0.06 0.75 0.66 −0.18 0.82
(39) Avignon (PI: Frédéric Baret) 43.93 4.88 32 75 0.56 0.01 0.76 0.75 −0.34 0.88
(40) IMC Oristano (PI: Didier Tanré) 39.91 8.50 10 41 0.44 0.06 0.66 0.73 −0.06 0.72
(41) Ispra (PI: Giuseppe Zibordi) 45.80 8.63 235 80 0.51 −0.03 0.75 0.50 −0.36 0.74
(42) Venise (PI: Giuseppe Zibordi) 45.31 12.51 10 74 0.51 0.08 0.71 0.71 −0.26 0.83
(43) Rome Tor Vergata (PI: Gian Paolo Gobbi) 41.84 12.65 130 61 0.51 0.08 0.68 0.61 −0.21 0.77
(44) FORTH CRETE (PI: Andrew Clive Banks) 35.33 25.28 20 48 0.22 0.10 0.61 0.69 −0.13 0.76
(45) Moldova (PI: Brent Holben) 47.00 28.82 205 64 0.54 0.10 0.77 0.62 −0.23 0.75
(46) IMS‐METU‐ERDEMLI (PI: Brent Holben) 36.56 34.26 3 53 0.25 −0.05 0.47 0.59 −0.37 0.75
(47) Kanpur (PI: Holben, Singh, Tripathi) 26.51 80.23 123 64 0.19 −0.31 0.58 0.79 −0.04 0.74
(48) Dalanzadgad (PI: Brent Holben) 43.58 104.42 1470 75 0.78 0.06 0.84 0.34 −0.54 0.21
(49) Beijing (PI: Chen and Goloub) 39.98 116.38 92 59 0.74 −0.32 0.41 0.66 −0.34 0.78
(50) Shirahama (PI: Brent Holben) 33.69 135.36 10 67 0.82 0.05 0.85 0.73 −0.26 0.77
(51) Lake Argyle (PI: Ross Mitchell) −15.89 128.75 150 46 0.95 −0.06 0.27 0.64 0.08 0.56
(52) Jabiru (PI: Ross Mitchell) −11.34 132.89 30 45 0.83 −0.09 0.19 0.65 0.14 0.51
(53) Nauru (PI: Rick Wagener) 0.52 166.92 7 53 0.48 −0.02 0.74 0.50 0.45 0.65

aNote. Shown are the site location number (Figure 3), name and PI, latitude, longitude, and elevation (h in [m]) for each site, the number of monthly
means compared (n), as well as the correlation coefficient (r), bias (b), and skill (s) for both AOT (t) and Angstrom parameter (a).
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underestimate in the AOT is most evident during the peak
AOT of the biomass burning season (August–September),
and varies from year to year, where the difference between
the model and observations is most pronounced in 2002 and
2006, whereas in 2004 and 2005 the model almost captures
the observed peak in AOT.
[45] Capo Verde (Figure 6, #27) is influenced by transport

of dust from Saharan sources. The model is well correlated
with the AOT (r = 0.77) and captures the seasonal vari-
ability in the dust loading with a slight high bias (b = 0.002)
but is less well correlated with the Angstrom parameter (r =
0.42) and is biased low (b = −0.039). Note that in contrast to
GSFC and Alta Floresta, the Angstrom exponent is nega-
tively correlated with the AOT, which is consistent with the
assertion that the site is dominated by dust aerosols: as the
dust load increases, the importance of large particles to AOT
increases and the Angstrom parameter decreases. The model
tends to underestimate the observed Angstrom parameter at
times when the model overestimates the AOT, suggesting
that the simulated dust loading is too high at certain parts of
the year (e.g., latter half of 2000).
[46] Beijing (Figure 7, #49) is influenced both by dust

from the Takla Makan and Gobi deserts as well as anthro-
pogenic pollutants. The model is again well correlated in the
AOT (r = 0.74) but has a significant low bias (b = −0.32).

The correlation with the Angstrom parameter is somewhat
more modest (r = 0.66) and the bias is also low (b = −0.34).
The seasonal peak in the simulated Angstrom parameter is
correlated with the peak in the model AOT, and at those
peaks the modeled Angstrom parameter is similar in mag-
nitude to the observed values. Although the model peak
AOT is significantly less than the observed peak in the
AOT, the similarity between the modeled and observed
Angstrom parameter at these times suggests a similar
composition of the modeled aerosol load to what is
observed. At times of year when the observed and simulated
AOT are at a minimum, however, the model significantly
underestimates the Angstrom parameter, which suggests that
the aerosol composition in the model is relatively dominated
by dust as opposed to pollution, which would be more
consistent with the observations. We point out that our
aerosol emissions data set for anthropogenic pollutants is
based on 1995 numbers and so is likely inadequate for how
aerosol loads have changed in China in recent years.
[47] Figure 8 shows a comparison of all the monthly

means we have evaluated from the 53 selected AERONET
sites over the period 2000–2006, presented as a scatter plot
of the model AOT versus the observed AOT, and likewise
for the Angstrom parameter. Overall, the model is well
correlated with the observed AOT but underestimates its

Figure 4. Model versus AERONET AOT and Angstrom parameter comparisons at GSFC. In each panel
we show a time series, scatterplot, and fractional distribution histogram of the model and AERONET
observations. In the time series, the model monthly means and standard deviation about the mean are
shown in the black line and symbols. The AERONET monthly means are indicated with the red line
and symbols, with the standard deviation about the monthly mean indicated by the orange bars. In the
scatter plot, the range of the 1‐2 and 2‐1 lines are indicated in the orange shading. In the PDF plot, the
model is indicated by the black symbols and line, and the AERONET observations are indicated by
the orange bars.
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Figure 5. As in Figure 4 but for Alta Floresta.

Figure 6. As in Figure 4 but for Capo Verde.
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magnitude, as indicated by the slope of the linear model
fitting the scatter plot (m = 0.48, r = 0.707). The model is
actually better correlated with the Angstrom parameter
observations (r = 0.810), but likewise is less than the
observed magnitude (m = 0.63) with a low bias (b = −0.196).
3.2.2.2. Comparisons to MODIS
[48] For purposes of comparing the model to the MODIS

observations we have begun with the Level 2 MODIS AOT
retrievals, available nominally at a 10 × 10 km2 spatial
resolution. We construct a gridded satellite product consis-
tent with the formal construction of the MODIS Level 3

gridded products. That is, we aggregate the individual
retrievals to the model’s 1.25° × 1° spatial resolution. In the
aggregation step, the grid‐box mean AOT is determined by
weighting the individual retrievals by their quality assurance
(QA) flags. QA flags indicate the level of reliability of the
retrievals, with values ranging from 0 (lowest quality) to
3 (highest quality). This aggregation and weighting is
performed with MODIS data available ±3 h of the model
synoptic output times (0, 6, 12, and 18Z). The monthly
mean AOT of the satellite observations is formed from this
aggregated data set by weighting the grid‐box average AOT

Figure 7. As in Figure 4 but for Beijing.

Figure 8. Scatterplot of model versus AERONET AOT (left) and Angstrom parameter (right) at all
53 sites for all valid monthly means during the period 2000–2006. We indicate the 1‐1 line with the solid
line, and 1‐2 and 2‐1 lines with the short dashed lines, and the line of best fit with the long dashed line.
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for each synoptic time by its grid‐box total QA value. The
monthly mean of the model AOT is formed by sampling the
model AOT at each synoptic time at points where the
MODIS retrievals exist and weighting each model grid‐box
AOT with the same MODIS grid‐box QA weighting. The
result is a monthly mean of the model AOT with the model
sampled only at times and locations where MODIS makes
observations.
[49] The approach described above of weighting and

sampling the model AOT values in a fashion consistent with
the satellite observations is obviously of importance when
considering, e.g., data assimilation of satellite AOT mea-
surements. It is not, however, an approach we have seen
commonly applied to many modeling studies. Chin et al.
[2004] and Matichuk et al. [2007, 2008] describe similar
approaches to sampling and comparing model output to
satellite observations, but do not show what effect this
strategy has on the comparison. More typically, when the
model monthly mean AOT is compared to satellite observa-
tions it is shown as the average of the model fields at all
synoptic output times (i.e., as was done above in our budget
analysis).
[50] In the spirit of putting the sampling approach

described above on a better foundation we consider here
several alternative approaches to constructing the model
monthly mean for comparison with satellite observations.
The “sampled” approach is the method described above. In
the “unsampled” approach we take the simple mean of the
model AOT output at all synoptic times with no weighting
for satellite observations. The “swath” approach is some-
where in the space between the sampled and unsampled
approaches; in the swath approach we mask out the model
AOT in locations outside of the MODIS Terra observational
swath before composing the monthly mean. This approach
amounts to selecting the model aerosol fields at times con-
sistent with the MODIS observations and includes all points
where MODIS potentially could have made a retrieval (i.e.,
we do not exclude cloud cover, bright surfaces, or sun glint
in this approach). As we will discuss shortly, the swath
approach has results essentially identical to the unsampled
approach, so we will not illustrate or tabulate its results.
[51] Figures 9 and 10 show the 7‐year average of the

MODIS Terra 550 nm AOT and the GEOS‐4 model AOT
for the period 2000–2006. Figure 9 shows the unsampled
monthly mean of the model AOT compared to the satellite
observations, while Figure 10 shows the sampled model
comparison. On the left half of each figure we show the
satellite average AOT (top) and the model average AOT
(bottom). On the right half of each figure we show a dif-
ference plot of the long‐term average of the model and
satellite AOT (top) and a plot of the correlation of the model
and satellite monthly means at each grid box.
[52] Similarities between the satellite and model apparent

in both comparisons include the magnitude and position of
the dust plume coming out of Africa, the relatively high
aerosol loading along the Indian base of the Tibetan plateau
and in the region of the Takla Makan desert and eastern
China, and the Asian pollution plume crossing the northern
Pacific Ocean. There are notable differences as well: the
model underestimates the aerosol loading in the western
United States and in the biomass‐burning‐dominated
regions in South America and southern Africa, the model

overestimates the aerosol loading in the northern Atlantic
and northern Pacific, and the model overestimates the
aerosol loading in the southern ocean. Generally speaking,
the model is well correlated with the satellite monthly means
(60% of grid points have r > 0.4) over both ocean and land,
with notably poorer correlation in the southern ocean,
northern Atlantic Ocean, and the ocean west of Central
America (where the model had enhanced AOT relative to
the observations).
[53] Although the features in both model sets are similar,

there are notable differences. First, the unsampled model
AOT (Figure 9) is visibly “smoother” in appearance than in
the sampled case (Figure 10). Second, the global mean AOT
is greater in the unsampled case than in the sampled case.
This is notably apparent in several ocean regions, including
the sea salt band in the “Roaring Forties” and the anthro-
pogenic export plumes between North America and Europe
and between Asia and North America. The difference plots
in Figures 9 and 10 reveal these features, as well as making
clear also that the unsampled long‐term average AOT is
greater in primarily anthropogenic polluted regions in North
America (U.S. east coast), central Europe, and Southeast
Asia. The sampled model results would suggest essentially
no bias in the long‐term average AOT between the model
and MODIS AOT on the U.S. east coast, a small high bias in
the model over central Europe, and a significant low bias
over Southeast Asia. The unsampled model, however,
shows a high bias in the model in all three regions. On the
other hand, there are minimal differences between these two
approaches in the western United States, the Saharan dust
plume from North Africa, or in biomass burning influenced
regions in South America and Southern Africa. The corre-
lations of the model observations are also affected, mainly in
the enhanced positive correlation under the Saharan dust
plume and somewhat less negative correlation west of
Central America in the sampled model case, as well as the
more apparent negative correlation near Antarctica in the
unsampled model case. We will discuss the differences of
the sampled and unsampled model monthly mean AOT
further in the Discussion (section 4) and restrict ourselves to
considering the sampled monthly mean for remainder of this
section.
[54] We considered the comparison of the model to sat-

ellite AOT in 20 regions over land and ocean illustrated in
Figure 11. Figure 12 shows the temporal variability of the
satellite and model monthly mean AOT for several of those
regions. Over the land, globally the MODIS AOT t550 =
0.21 and the sampled model AOT t550 = 0.17 is well cor-
related with the MODIS observations (r = 0.75). For brevity,
we graphically show the same analysis for South America,
the western United States, and Southeast Asia. The statistics
in these and other land regions from Figure 11 are shown in
Table 4. The analysis for South America is similar to what
was shown with the AERONET data: the model signifi-
cantly underestimates the AOT in this region, particularly in
the peak biomass burning season (August–September). In
the western United States the model AOT is about half of
the MODIS AOT magnitude but is well correlated (r =
0.73). In Southeast Asia the model AOT also underestimates
the MODIS AOT magnitude, notably in 2003 when there
was greatly enhanced biomass burning from wildfires in
Siberia.
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[55] Over the ocean, the MODIS AOT t550 = 0.16 and the
sampled model AOT t550 = 0.14, and the correlation is
somewhat poorer (r = 0.57) than globally over the land. We
graphically show the ocean analysis additionally for only the
tropical North Atlantic, the Caribbean, and the Southern
Ocean, but the analysis for other ocean regions shown in
Figure 11 is summarized as well in Table 4. In the tropical
North Atlantic, where the aerosol load is dominated by
mineral dust, the model develops a similar magnitude and
temporal evolution (r = 0.86) to the MODIS observations.
For comparison we show the Caribbean basin, which is the
receptor of much of that mineral dust and see that the model
AOT is considerably less than the observed AOT, suggest-
ing too much removal of dust as it transits the Atlantic. In
the Southern Ocean the model AOT is dominated by sea salt
aerosols, and despite our reduction of the overall sea salt

burden the model AOT is still about 10% greater than the
MODIS observations.
3.2.2.3. MISR
[56] We aggregate the MISR Level 2 retrieved AOT at

558 nm to our model grid in a similar fashion to what was
done for MODIS. In Figure 12 we also show the MISR
monthly mean AOT average over each region (statistics for
these and other regions are also tabulated in Table 4). In
general, the MISR monthly mean AOT is similar in mag-
nitude and well correlated with the MODIS observations,
despite the sampling and weighting differences in the two
data sets. The magnitude of the MISR AOT is generally less
than the MODIS values, most significantly over land, and
especially in North America and Asia. Note that the reduced
spatial sampling of MISR relative to MODIS implies that
MODIS observes more of the high aerosol events that can

Figure 9. Seven year average (2000–2006) of the MODIS Terra (top, left) and the GEOS‐4 model
(bottom, left) AOT [550 nm] (top, left). Also shown are the difference GEOS‐4 ‐ MODIS in the mean
AOT (top, right) and the grid‐box correlations of the GEOS‐4 monthly means against the MODIS monthly
means (bottom, right). Results are shown for the unsampled monthly mean of the model compared to the
satellite observations.
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dominate the regionally averaged AOT. Over the ocean
regions, the correlation of the MISR and MODIS monthly
means is always greater than 0.9 except in especially cloud‐
covered regions (e.g., Northern Ocean, Southern Ocean, and
southeastern Pacific) where sampling would be more of a
consideration. The correlation of MISR and MODIS is
similarly high over the land, except in North Africa (r =
0.75), where MISR sees considerably more of the surface
than MODIS, and in northern Asia (r = 0.72), where MISR
has a considerably lower AOT than MODIS.
[57] The comparison of the model to MISR is qualita-

tively similar to the model versus MODIS results. The
notable exception illustrated in Figure 12 is over the western
United States, where the MISR AOT is much lower than
MODIS and similar in magnitude to the model (MISR AOT
is biased low relative to MODIS, as is the model AOT). We
note that for the results shown in Figure 12, the model traces
are from the model sampled with the MODIS observation
statistics. Strictly speaking, the model should be sampled
consistently with the MISR observations to form a second
set of monthly means for this comparison. We have done

this (not shown) and the results indicate some differences,
especially over the high latitudes and bright desert regions
(Northern Africa) owing to different sampling statistics of
MISR in these regions, but this does not substantially
change the conclusions here.

4. Discussion

[58] We showed that the GEOS‐4 aerosol emissions and
simulation of aerosol lifecycle (burden and loss rates) is
generally within the range of the AeroCom suite of models
and is similar to the offline GOCART model. The signifi-
cant differences between GEOS‐4 and the offline GOCART
relate to scaling of dust and sea salt emissions and differ-
ences in biomass burning emissions. The dry removal pro-
cesses of dust and sea salt seem underestimated in GEOS‐4
with respect to GOCART and the AeroCom models. The
somewhat longer wet removal lifetime of carbonaceous
aerosols in GEOS‐4 relative to the AeroCom models may be
related to longer conversion time of hydrophobic to
hydrophilic modes assumed in GEOS‐4. A shorter conver-

Figure 10. As in Figure 9 but for the sampled monthly mean of the model compared to the satellite
observations.
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sion time to the hydrophilic mode would lead to more rapid
wet removal but also might improve the AOT comparison in
biomass‐burning regions because this will lead to a higher
AOT in higher humidity environments. These issues will be
the subjects of further work elsewhere.
[59] The remainder of our discussion focuses on the

simulated aerosol optical thickness. For all species, the
GEOS‐4 mass extinction efficiencies assumed are within
the range of the AeroCom values. The simulated AOT
magnitude is also similar to the offline GOCART and
AeroCom model results, except in the cases of sea salt (as
discussed above) and sulfate. For sulfate, the simulated
AOT is slightly higher than the range of AeroCom models
but is similar to GOCART. Likewise, the mass extinction
efficiency for sulfate is somewhat greater than the mean of
the AeroCom results. The mass extinction efficiency for
sulfate is a strong function of environmental humidity, and
so differences may arise here because of the humidity values
in GEOS‐4 relative to other models.
[60] For the remainder of the analysis here we recall that

we have reduced the sea salt burden in the model by a factor
of two. The simulated AOT is well correlated with the
overall AERONET AOT and Angstrom parameter values
(Figure 8) and we develop similar seasonal and interannual
variability, as illustrated for select AERONET sites repre-
sentative of different aerosol regimes (Figures 4–7). The
model has its lowest skill in AOT (st < 0.4 as in Table 3) at
8 of the 53 sites considered, which are primarily biomass
burning influenced sites in South America, southern Africa,
and Australia. The model Angstrom parameter is biased low
relative to AERONET at all sites and has its lowest skill
(sa < 0.4 as in Table 3) at 4 of the 53 sites, 3 of which are
dust dominated (Solar Village, Dakar, and Dalanzadgad).
The fourth site is Mongu, which is biomass burning
dominated; likewise, Dakar and Dalanzadgad have seasonal
incursions of influence from biomass burning.

[61] The MODIS and MISR data sets are well correlated
with each other (Table 4), with the worst correlations
occurring over land in northern Asia and northern Africa
and over the ocean in the southeastern Pacific. We would
not necessarily expect good correlation over northern Asia
and northern Africa because of the prevalence of bright
surfaces (deserts and snow in Asia, deserts in Africa) that
particularly hamper the MODIS retrievals. It is not imme-
diately clear why the correlation is less good over the
southeastern Pacific, except that in our analysis this is a
relatively small region that is frequently cloud obscured.
Over ocean, the bias between MODIS and MISR monthly
mean AOT is 0.015 or smaller. Over land, the biases are
generally greater, with MODIS having a higher AOT in all
regions except northern Africa, where few retrievals are ever
attempted. The bias is the largest over the western United
States and in southeastern and western Asia. A recent study
comparing MODIS land retrievals and AERONET observa-
tions in these regions (R. C. Levy, L. A. Remer, R. G.
Kleidman, S. Mattoo, C. Ichoku, and T. F. Eck, Global
evaluation of the Collection 5 MODIS aerosol products over
land, submitted to Atmospheric Chemistry and Physics,
2010) generally found that MODIS AOT is high relative to
AERONET, which is attributed to poorly characterized
retrievals over marginally bright surfaces. This high bias in
the MODIS AOT explains the better agreement of the model
with MISR and AERONET in these regions.
[62] Comparing the sampled and unsampled model AOT

to one another in Table 4 and Figures 10–12 reveals that the
regional AOT is greater in the unsampled model case in all
regions considered except the tropical North Atlantic. In
general, the unsampled model has greater overall skill at
reproducing the MODIS AOT observations over land, while
the sampled model has better skill over the ocean (Table 4).
Over land, the unsampled model compares better to MODIS
in biomass‐burning areas (in northern and southern Africa,
South America, and southern and western Asia), where the

Figure 11. Map showing the region definitions used in Figure 12 and Table 4.
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sampled model AOT is considerably lower than the satellite
observations. Over ocean, the unsampled model compares
more favorably in the Indian Ocean, southwest Pacific, and
North and South Atlantic regions.
[63] We consider three possible explanations for differ-

ences in the sampled and unsampled model mean AOT.
First, we consider a diurnal effect: in constructing the un-
sampled model comparison we are using the AOT from all
four model synoptic output times (0, 6, 12, and 18 UTC)
throughout the month and not simply at the satellite over-
pass time, and because of diurnal variations in aerosol

loading and optical properties (e.g., response to environ-
mental humidity) we might find the explanation for the
difference. To investigate this case we constructed four
additional unsampled model monthly mean analyses, one
each averaging the model output only at 0, 6, 12, and
18 UTC (for brevity, results not shown here). While the
greatest differences between the unsampled and sampled
model regional AOT (Table 4) is as much as 40% over land
and 20% over the ocean (depending on the region), the
difference between any of the four synoptic unsampled and
“all‐times” unsampled monthly regional AOT is only abut

Figure 12. Comparison of the monthly means of the model and satellite observations of AOT [550 nm]
for various regions. Shown are the MODIS Terra (black), MISR (red), sampled GEOS‐4 (blue), and
unsampled GEOS‐4 model (green).
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Table 4. Statistics for the Monthly Means of the MODIS Terra, MISR, and GEOS‐4 AOT for Land (left) and Ocean (right) Regions
Indicated in Figure 11a

Global (Land, 180°W–180°E, 90°S–90°N) Global (Ocean, 180°W–180°E, 90°S–90°N)

ht550i r b Skill ht550i r b Skill

MODIS 0.210 MODIS 0.157
MISR 0.202 0.899 −0.008 0.905 MISR 0.158 0.720 0.001 0.858
G4 0.171 0.747 −0.039 0.612 G4 0.137 0.570 −0.020 0.759
G4uns 0.199 0.755 −0.011 0.800 G4uns 0.158 0.533 0 0.699

North America Tropical N. Atlantic (50°W–0°W, 10°N–30°N)

ht550i r b Skill ht550i r b Skill

MODIS 0.150 MODIS 0.273
MISR 0.125 0.964 −0.025 0.967 MISR 0.254 0.959 −0.015 0.979
G4 0.113 0.764 −0.037 0.587 G4 0.235 0.856 −0.038 0.853
G4uns 0.147 0.783 −0.003 0.471 G4uns 0.226 0.802 −0.046 0.823

South America Caribbean (100°W–50°W, 10°N–30°N)

ht550i r b Skill ht550i r b Skill

MODIS 0.158 MODIS 0.195
MISR 0.143 0.953 −0.015 0.927 MISR 0.182 0.973 −0.014 0.978
G4 0.115 0.727 −0.043 0.355 G4 0.127 0.914 −0.068 0.680
G4uns 0.128 0.757 −0.029 0.443 G4uns 0.135 0.885 −0.061 0.642

Eastern United States South Atlantic (70°W–20°E, 60°S–10°N)

ht550i r b Skill ht550i r b Skill

MODIS 0.148 MODIS 0.204
MISR 0.140 0.974 −0.008 0.949 MISR 0.200 0.957 −0.004 0.967
G4 0.158 0.720 0.010 0.650 G4 0.165 0.583 −0.039 0.687
G4uns 0.221 0.683 0.073 0.679 G4uns 0.170 0.550 −0.034 0.707

Western United States North Atlantic (80°W–0°W, 30°N–60°N)

ht550i r b Skill ht550i r b Skill

MODIS 0.167 MODIS 0.173
MISR 0.107 0.882 −0.060 0.930 MISR 0.178 0.909 0.007 0.912
G4 0.083 0.730 −0.084 0.665 G4 0.183 0.554 0.010 0.620
G4uns 0.102 0.669 −0.065 0.586 G4uns 0.220 0.434 0.047 0.649

Southern Africa Northern Ocean (180°W–180°E, 60°N–90°N)

ht550i r b Skill ht550i r b Skill

MODIS 0.200 MODIS 0.153
MISR 0.196 0.960 −0.004 0.962 MISR 0.157 0.882 0.004 0.895
G4 0.121 0.415 −0.079 0.536 G4 0.159 0.348 0.005 0.659
G4uns 0.131 0.375 −0.069 0.583 G4uns 0.165 0.340 0.012 0.475

Northern Africa Southern Ocean (180°W–180°E, 60°S–30°S)

ht550i r b Skill ht550i r b Skill

MODIS 0.314 MODIS 0.136
MISR 0.329 0.727 0.018 0.859 MISR 0.144 0.864 0.008 0.823
G4 0.282 0.555 −0.032 0.455 G4 0.152 0.708 0.016 0.615
G4uns 0.325 0.426 0.011 0.635 G4uns 0.187 0.263 0.051 0.463

Europe Indian Ocean (20°E – 120°E, 30°S–30°N)

ht550i r b Skill ht550i r b Skill

MODIS 0.151 MODIS 0.176
MISR 0.133 0.915 −0.018 0.871 MISR 0.171 0.920 −0.005 0.957
G4 0.240 0.665 0.089 0.831 G4 0.113 0.861 −0.063 0.792
G4uns 0.316 0.576 0.165 0.762 G4uns 0.122 0.824 −0.053 0.843

Northern Asia Northern Pacific (120°E–110°W, 10°N–60°N)

ht550i r b Skill ht550i r b Skill

MODIS 0.192 MODIS 0.172
MISR 0.125 0.682 −0.066 0.755 MISR 0.171 0.920 −0.005 0.957
G4 0.173 0.591 −0.020 0.594 G4 0.156 0.863 −0.016 0.889
G4uns 0.201 0.638 0.008 0.447 G4uns 0.181 0.807 0.009 0.883
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10% in South America and southern Africa (i.e., biomass
burning regions) and is smaller elsewhere.
[64] We note here that the swath approach to constructing

the monthly mean described previously yields essentially
identical results to the unsampled approach. Just as there
were no real variations in the model monthly mean AOT
with the 0, 6, 12, and 18 UTC model output were separately
compared to one another and to the “all‐times” unsampled
monthly mean, the swath approach amounts to sampling the
model at the same local time at all grid boxes (i.e., the
MODIS Terra daytime overpass at the equator is approxi-
mately 10:30 AM local time) and so is really just a variation
on the diurnal sampling described above. Because the results
for the swath approach are so similar to the unsampled
approach we neglect consideration of it in the remaining
discussion. These results imply the diurnal variation in AOT
is negligible to the monthly mean.
[65] A second possible explanation is in the seasonal

frequency of observation. Since MODIS requires sunlight to
make aerosol retrievals, as sunlight retreats at high latitudes
in the winter there are fewer retrievals made, and a seasonal
shift in the northernmost retrievals is apparent as monthly
mean plots are compared. In a similar fashion, MODIS does
not make retrievals over the bright snow‐ or ice‐covered
surfaces that generally follow the same seasonal pattern as
sunlight. We constructed again the monthly analysis for the
unsampled model separately for each of our four synoptic
output times, this time, however, masking the individual
monthly means so that we only retained grid boxes that were
present in the monthly mean of the satellite observations.
The results of this comparison (also not shown) were nearly
identical to the synoptic unsampled monthly regional AOT
described above.
[66] The explanation then for the difference between the

unsampled and sampled model mean AOT is thus in spatial
sampling within an orbital swath of the MODIS instrument.
In other words, it is important to the monthly mean where
MODIS does and does not make retrievals on a particular
orbit. Since MODIS does not retrieve aerosols in cloudy
conditions, for example, its retrieved AOT must be con-

sidered biased toward less humid environments. We illus-
trate this point in Figure 13, which shows the model daily
average AOT and the model and MODIS cloud fraction on
5 June 2000. Our choice of date here is arbitrary, merely to
illustrate the point. On the left we show the simple model
daily average AOT (top) and the same data masked to
exclude locations MODIS Terra did not make an aerosol
retrieval (bottom). On the right we show the model daily
average cloud fraction (top) and the MODIS cloud fraction
(bottom). Evaluating the model cloud fraction in the context
of the MODIS observations is beyond the scope of this
study, but there is a visible correlation between the high
cloud fraction features in the model and MODIS data, as
well as between high model cloud fraction and high model
AOT. While we have not performed this analysis for all
days aggregated in Figures 9 and 10, we can with some
confidence state that the difference between the sampled and
unsampled monthly mean model AOT is due to this feature
of the sampled model AOT being biased against high cloud
fraction. Because MODIS does not retrieve AOT in high‐
cloud‐fraction environments, the sampled model AOT com-
parison to MODIS observations seems the more appropriate
comparison to make.
[67] Overall, there is consistency in our interpretation of

the model AOT in terms of the AERONET and satellite data
sets. For all land regions except Europe and the eastern
United States the model is biased low in AOT relative to
MODIS (Table 4 and Figure 10), consistent with the overall
comparison to AERONET. The high biases in Europe and
the eastern United States are explained in terms of the rel-
atively high sulfate AOT magnitude, which is the dominant
component of AOT in these regions. The worst model skill
over land relative to MODIS is in South America, where we
have underestimated biomass burning emissions; we have a
large low bias relative to MODIS in southern Africa for the
same basic reason. The model’s lowest biases relative to
MODIS are in the western United States and western Asia,
but we have pointed out that MODIS is likely biased high in
these regions and that the model agrees better with MISR as
a result.

Table 4. (continued)

Southern Asia SE Pacific (110°W–70°W, 60°S–10°N)

ht550i r b Skill ht550i r b Skill

MODIS 0.363 MODIS 0.124
MISR 0.292 0.978 −0.071 0.928 MISR 0.136 0.629 0.011 0.726
G4 0.321 0.738 −0.042 0.685 G4 0.126 0.467 0.001 0.730
G4uns 0.419 0.702 0.056 0.734 G4uns 0.134 0.47 0.01 0.712

Western Asia SW Pacific (120°E–110°W, 60°S–10°N)

ht550i r b Skill ht550i r b Skill

MODIS 0.297 MODIS 0.152
MISR 0.234 0.955 −0.063 0.967 MISR 0.163 0.881 0.011 0.891
G4 0.198 0.848 −0.099 0.756 G4 0.093 0.804 −0.059 0.642
G4uns 0.235 0.887 −0.062 0.858 G4uns 0.105 0.709 −0.048 0.687

aNote. Where a continent name is given, the entire continent (as defined by the shading in Figure 11) is used in the average. For ocean regions we also
given the latitude and longitude of the bounding boxes used (ocean grid points only) in the averaging. For each region we show the monthly mean AOT
(ht550i), correlation coefficient (r), bias (b), and skill, where the correlation coefficient, bias, and skill are relative to the MODIS observations. Two
instances of the model are shown: our sampled model monthly mean statistics (G4) and the unsampled model monthly mean statistics (G4uns).
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[68] Over the ocean the picture is somewhat different,
with a clear positive bias remaining in the model at high
southern latitudes (Figure 10). As discussed earlier, the
model has a high sea salt aerosol burden relative to other
models, and even after reduction of the burden by a factor of
2 the GEOS‐4 AOT remains somewhat high. In other ocean
regions where sea salt is not the dominant component,
however, there tends to be a low bias in the model AOT
relative to MODIS. West of southern Africa, for example,
where biomass burning is an important player, we see the
result of too low export of biomass burning aerosol into this
region. Likewise we see too little export of dust from the
Sahara Desert into the tropical North Atlantic and Caribbean
regions, and even a hint of the dust plume traveling too far
to the south. We also see a low bias in regions influenced by
complicated mixtures of dust, pollution, and biomass burning
aerosols (Indian Ocean and Indonesian ocean region). This
analysis suggests, for example, that the removal of dust
downwind of the Sahara is too efficient in our model because
although we have the seasonal variability in AOT in the

Caribbean we underestimate the magnitude of the peak AOT
(in June and July) by almost a factor of 2 (Figure 12).

5. Conclusions

[69] We have implemented a version of the GOCART
aerosol module online in the GEOS‐4 atmospheric general
circulation model and data assimilation system. The model
has been used to simulate the global distributions of aerosols
for the period 2000–2006. The emissions, burdens, and
lifetimes of aerosols in GEOS‐4 are within the range of
similar aerosol models that participated in the AeroCom
model intercomparison studies and are similar to the results
of the offline GOCART model. The exception to the above
statement is that the modeled sea salt aerosol burden is about
three times greater than the mean of the AeroCom models
and about twice as great as the burden developed in the
offline GOCART model. We attribute the excessive sea salt
burden to inefficient removal by through sedimentation. To

Figure 13. The unsampled daily average model AOT (top, left) and the sampled model AOT (bottom,
left) on 5 June 5 2000. Also shown are the model cloud fraction (top, right) and the MODIS Terra cloud
fraction (bottom, right).
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a lesser extent this is also a problem in the treatment of dust
aerosols in our model.
[70] For all species in the model, the aerosol mass

extinction efficiency used is within the range of the Aero-
Com results. For all species except sea salt and sulfate the
model AOT is also within the range of the AeroCom results.
For sea salt, the AOT is greater than the mean of the
AeroCom results by nearly a factor of 3, consistent with the
high sea salt burden discussed above. The sulfate AOT in
the model is about 60% greater than the mean of the
AeroCom results but is similar in magnitude to the offline
GOCART model and is only 5% greater than the highest
sulfate AOT of the AeroCom models.
[71] The model total AOT exhibits similar regional and

seasonal variability to observations from the AERONET
ground‐based sun photometers and the space‐based MODIS
and MISR instruments. Additionally, the model has similar
seasonal variability and magnitude in the simulated Ang-
strom parameter as the AERONET observations at most
sites. Compared to AERONET, however, the model AOT
and Angstrom parameter are overall biased low, with the
model AOT being underestimated especially where the
observed AOT value is high. The model AOT is generally
low in regions primarily influenced by biomass burning,
pointing to errors in emissions used to drive the model and
possibly to errors in aging of smoke aerosols from their
hydrophobic to hydrophilic modes. This is also the case with
the offline GOCART model [Chin et al., 2009b]. In con-
trast, the model AOT is biased high relative to the ob-
servations in primarily sulfate‐dominated regions of the U.
S. east coast and Europe. The best agreement in both the
magnitude and variability of the AOT between the model
and observations is immediately downwind of the Saharan
dust plume. Fidelity between the model over ocean AOT
and satellite AOT is greatly improved by reducing the model
sea salt burden by a factor of 2.
[72] The above results point out strengths and limitations

in current model evaluation strategies. With global con-
straints on AOT from satellite data sets, aerosol models are
frequently able to match the observations [e.g., Kinne et al.,
2006]. The pathway to making that match, however, is less
well constrained. As indicated in this paper and the Aero-
Com results [Textor et al., 2006], for example, differences in
the simulated aerosol lifetimes among models can be quite
large. We point out that aerosol lifetime and mass are rel-
atively unconstrained on the global scale. This requires a
deeper level of analysis and suggests new requirements for
next generation space‐based observations to provide greater
information about aerosol composition.
[73] Additionally, we considered various strategies for

comparing the model AOT to satellite monthly mean AOT.
We find that the agreement in the comparison is signifi-
cantly affected by the choice of sampling strategy. The
model monthly mean AOT is generally higher if it is com-
puted as the simple mean of all model output relative to the
mean computed by first sampling the model at times and
locations of satellite AOT retrievals. The differences
between the unsampled and sampled monthly mean AOT
seems not to result from diurnal variability in either the
simulated aerosol load or optical properties but rather to be
related to sampling biases introduced because the satellite
only observes AOT under clear‐sky conditions. Although

there remain biases in the model itself due to errors in
emissions and aerosol processes, this analysis suggests a
need for model studies to consider these sampling issues in
model‐data comparisons. We argue here that the sampled
model comparison is the more appropriate one to make.
[74] These results provide a foundation for future online

studies of global aerosol distributions in the GEOS model.
The next generation GEOS version 5 (GEOS‐5) model per-
mits investigation of the aerosol direct and semidirect radia-
tive effects through interaction of aerosol fields and the
model’s radiation package. Additionally, the GEOS chemistry‐
climate model [Pawson et al., 2008] has implemented
stratospheric and (soon) tropospheric chemistry modules
into the same GEOS‐5 framework that incorporates the
online GOCART, which will permit interaction between
aerosols and atmospheric chemistry. Future work will also
emphasize addressing weaknesses found in the current
model, including the lifecycle of sea salt aerosols, biomass‐
burning aerosol sources, and the treatment of aerosol
humidification and subsequent impact on aerosol optical
properties.
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